CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutSign UpSign In

Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.

| Download

GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it

Views: 418346
1
<Chapter><Heading> Miscellaneous</Heading>
2
3
<Table Align="|l|" >
4
5
<Row>
6
<Item>
7
<Index> SL2Z </Index>
8
<C>SL2Z(p) </C>
9
<C>SL2Z(1/m) </C>
10
<P/>
11
12
Inputs a prime <M>p</M> or the reciprocal <M>1/m</M> of a
13
square free integer <M>m</M>. In the first case the function
14
returns the conjugate <M>SL(2,Z)^P</M> of the special linear group <M>SL(2,Z)</M>
15
by the matrix <M>P=[[1,0],[0,p]]</M>. In the second case it returns the group <M>SL(2,Z[1/m])</M>.
16
17
</Item>
18
</Row>
19
20
21
<Row>
22
<Item>
23
<Index> BigStepLCS </Index>
24
<C>BigStepLCS(G,n) </C>
25
<P/>
26
27
Inputs a group <M>G</M> and a positive integer <M>n</M>.
28
It returns a subseries <M>G=L_1</M>&tgt;<M>L_2</M>&tgt;<M> \ldots L_k=1</M> of the lower central series of
29
<M>G</M> such that <M>L_i/L_{i+1}</M> has order greater than <M>n</M>.
30
</Item>
31
</Row>
32
33
34
<Row>
35
<Item>
36
<Index> Classify </Index>
37
<C>Classify(L,Inv) </C>
38
<P/>
39
40
Inputs a list of objects <M>L</M> and a function <M>Inv</M> which
41
computes an invariant of each object. It returns a list of lists which classifies the objects of <M>L</M> according to the invariant..
42
</Item>
43
</Row>
44
45
<Row>
46
<Item>
47
<Index> RefineClassification </Index>
48
<C>RefineClassification(C,Inv) </C>
49
<P/>
50
51
Inputs a list <M>C:=Classify(L,OldInv)</M> and returns a refined classification according to the invariant <M>Inv</M>.
52
</Item>
53
</Row>
54
55
56
57
58
<Row>
59
<Item>
60
<Index> Compose(f,g)</Index>
61
<C>Compose(f,g) </C>
62
<P/>
63
64
Inputs two <M>FpG</M>-module homomorphisms <M>
65
f:M \longrightarrow N</M> and <M>g:L \longrightarrow M</M>
66
with <M>Source(f)=Target(g)</M> .
67
It returns the composite homomorphism <M>fg:L \longrightarrow N</M> .
68
<P/>
69
This also applies to group homomorphisms <M>f,g</M>.
70
</Item>
71
</Row>
72
<Row>
73
<Item>
74
<Index> HAPcopyright</Index>
75
<C>HAPcopyright() </C>
76
<P/>
77
78
This function provides details of HAP'S GNU public copyright licence.
79
</Item>
80
</Row>
81
<Row>
82
<Item>
83
<Index> IsLieAlgebraHomomorphism</Index>
84
<C>IsLieAlgebraHomomorphism(f) </C>
85
<P/>
86
87
Inputs an object <M>f</M> and returns true if <M>f</M>
88
is a homomorphism <M>f:A \longrightarrow B</M>
89
of Lie algebras (preserving the Lie bracket).
90
</Item>
91
</Row>
92
93
<Row>
94
<Item>
95
<Index> IsSuperperfect</Index>
96
<C>IsSuperperfect(G) </C>
97
<P/>
98
99
Inputs a group <M>G</M> and returns "true" if both the
100
first and second integral homology of <M>G</M> is trivial.
101
Otherwise, it returns "false".
102
</Item>
103
</Row>
104
105
<Row>
106
<Item>
107
<Index>MakeHAPManual</Index>
108
<C>MakeHAPManual()</C>
109
<P/>
110
This function creates the manual for HAP from an XML file.
111
</Item>
112
</Row>
113
114
<Row>
115
<Item>
116
<Index> PermToMatrixGroup </Index>
117
<C>PermToMatrixGroup(G,n) </C>
118
<P/>
119
120
Inputs a permutation group <M>G</M> and its degree <M>n</M>.
121
Returns a bijective homomorphism <M>f:G \longrightarrow M</M> where
122
<M>M</M> is a group of permutation matrices.
123
</Item>
124
</Row>
125
<Row>
126
<Item>
127
<Index> SolutionsMatDestructive</Index>
128
<C>SolutionsMatDestructive(M,B) </C>
129
<P/>
130
131
Inputs an <M>m�n</M> matrix <M>M</M> and a <M>k�n</M> matrix
132
<M>B</M> over a field. It returns a k�m matrix <M>S</M> satisfying
133
<M>SM=B</M>.
134
<P/>
135
The function will leave matrix <M>M</M> unchanged but
136
will probably change matrix <M>B</M>.
137
<P/>
138
(This is a trivial rewrite of the standard GAP function
139
<M>SolutionMatDestructive(</M>&tlt;<M>mat</M>&tgt;,&tlt;<M>vec</M>&tgt;) .)
140
</Item>
141
</Row>
142
143
<Row>
144
<Item>
145
<Index> LinearHomomorphismsPersistenceMat</Index>
146
<C>LinearHomomorphismsPersistenceMat(L) </C>
147
<P/>
148
Inputs a composable sequence <M>L</M> of vector space homomorphisms. It returns an integer matrix containing the dimensions of the images of the various composites. The sequence <M>L</M> is determined up to isomorphism by this matrix.
149
</Item>
150
</Row>
151
152
153
<Row>
154
<Item>
155
<Index> NormalSeriesToQuotientHomomorphisms</Index>
156
<C>NormalSeriesToQuotientHomomorphisms(L) </C>
157
<P/>
158
Inputs an (increasing or decreasing) chain <M>L</M> of normal subgroups in some group <M>G</M>. This <M>G</M> is the largest group in the chain. It
159
returns the sequence of composable group homomorphisms <M>G/L[i] \rightarrow G/L[i+/-1]</M>.
160
</Item>
161
</Row>
162
163
164
165
<Row>
166
<Item>
167
<Index> TestHap</Index>
168
<C>TestHap() </C>
169
<P/>
170
171
This runs a representative sample of HAP functions and checks to see that they produce the correct output.
172
</Item>
173
</Row>
174
175
</Table>
176
</Chapter>
177
178
179
180