Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
Project: cocalc-sagemath-dev-slelievre
Views: 418346<Chapter><Heading> Miscellaneous</Heading>12<Table Align="|l|" >34<Row>5<Item>6<Index> SL2Z </Index>7<C>SL2Z(p) </C>8<C>SL2Z(1/m) </C>9<P/>1011Inputs a prime <M>p</M> or the reciprocal <M>1/m</M> of a12square free integer <M>m</M>. In the first case the function13returns the conjugate <M>SL(2,Z)^P</M> of the special linear group <M>SL(2,Z)</M>14by the matrix <M>P=[[1,0],[0,p]]</M>. In the second case it returns the group <M>SL(2,Z[1/m])</M>.1516</Item>17</Row>181920<Row>21<Item>22<Index> BigStepLCS </Index>23<C>BigStepLCS(G,n) </C>24<P/>2526Inputs a group <M>G</M> and a positive integer <M>n</M>.27It returns a subseries <M>G=L_1</M>&tgt;<M>L_2</M>&tgt;<M> \ldots L_k=1</M> of the lower central series of28<M>G</M> such that <M>L_i/L_{i+1}</M> has order greater than <M>n</M>.29</Item>30</Row>313233<Row>34<Item>35<Index> Classify </Index>36<C>Classify(L,Inv) </C>37<P/>3839Inputs a list of objects <M>L</M> and a function <M>Inv</M> which40computes an invariant of each object. It returns a list of lists which classifies the objects of <M>L</M> according to the invariant..41</Item>42</Row>4344<Row>45<Item>46<Index> RefineClassification </Index>47<C>RefineClassification(C,Inv) </C>48<P/>4950Inputs a list <M>C:=Classify(L,OldInv)</M> and returns a refined classification according to the invariant <M>Inv</M>.51</Item>52</Row>5354555657<Row>58<Item>59<Index> Compose(f,g)</Index>60<C>Compose(f,g) </C>61<P/>6263Inputs two <M>FpG</M>-module homomorphisms <M>64f:M \longrightarrow N</M> and <M>g:L \longrightarrow M</M>65with <M>Source(f)=Target(g)</M> .66It returns the composite homomorphism <M>fg:L \longrightarrow N</M> .67<P/>68This also applies to group homomorphisms <M>f,g</M>.69</Item>70</Row>71<Row>72<Item>73<Index> HAPcopyright</Index>74<C>HAPcopyright() </C>75<P/>7677This function provides details of HAP'S GNU public copyright licence.78</Item>79</Row>80<Row>81<Item>82<Index> IsLieAlgebraHomomorphism</Index>83<C>IsLieAlgebraHomomorphism(f) </C>84<P/>8586Inputs an object <M>f</M> and returns true if <M>f</M>87is a homomorphism <M>f:A \longrightarrow B</M>88of Lie algebras (preserving the Lie bracket).89</Item>90</Row>9192<Row>93<Item>94<Index> IsSuperperfect</Index>95<C>IsSuperperfect(G) </C>96<P/>9798Inputs a group <M>G</M> and returns "true" if both the99first and second integral homology of <M>G</M> is trivial.100Otherwise, it returns "false".101</Item>102</Row>103104<Row>105<Item>106<Index>MakeHAPManual</Index>107<C>MakeHAPManual()</C>108<P/>109This function creates the manual for HAP from an XML file.110</Item>111</Row>112113<Row>114<Item>115<Index> PermToMatrixGroup </Index>116<C>PermToMatrixGroup(G,n) </C>117<P/>118119Inputs a permutation group <M>G</M> and its degree <M>n</M>.120Returns a bijective homomorphism <M>f:G \longrightarrow M</M> where121<M>M</M> is a group of permutation matrices.122</Item>123</Row>124<Row>125<Item>126<Index> SolutionsMatDestructive</Index>127<C>SolutionsMatDestructive(M,B) </C>128<P/>129130Inputs an <M>m�n</M> matrix <M>M</M> and a <M>k�n</M> matrix131<M>B</M> over a field. It returns a k�m matrix <M>S</M> satisfying132<M>SM=B</M>.133<P/>134The function will leave matrix <M>M</M> unchanged but135will probably change matrix <M>B</M>.136<P/>137(This is a trivial rewrite of the standard GAP function138<M>SolutionMatDestructive(</M>&tlt;<M>mat</M>&tgt;,&tlt;<M>vec</M>&tgt;) .)139</Item>140</Row>141142<Row>143<Item>144<Index> LinearHomomorphismsPersistenceMat</Index>145<C>LinearHomomorphismsPersistenceMat(L) </C>146<P/>147Inputs a composable sequence <M>L</M> of vector space homomorphisms. It returns an integer matrix containing the dimensions of the images of the various composites. The sequence <M>L</M> is determined up to isomorphism by this matrix.148</Item>149</Row>150151152<Row>153<Item>154<Index> NormalSeriesToQuotientHomomorphisms</Index>155<C>NormalSeriesToQuotientHomomorphisms(L) </C>156<P/>157Inputs an (increasing or decreasing) chain <M>L</M> of normal subgroups in some group <M>G</M>. This <M>G</M> is the largest group in the chain. It158returns the sequence of composable group homomorphisms <M>G/L[i] \rightarrow G/L[i+/-1]</M>.159</Item>160</Row>161162163164<Row>165<Item>166<Index> TestHap</Index>167<C>TestHap() </C>168<P/>169170This runs a representative sample of HAP functions and checks to see that they produce the correct output.171</Item>172</Row>173174</Table>175</Chapter>176177178179180