CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutSign UpSign In

Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.

| Download

GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it

Views: 418346
1
<Chapter><Heading> Commutator and nonabelian tensor computations</Heading>
2
3
<Table Align="|l|" >
4
5
<Row>
6
<Item>
7
<Index>BaerInvariant</Index>
8
<C>BaerInvariant(G,c) </C>
9
<P/>
10
11
Inputs a nilpotent group <M>G</M> and integer <M>c</M>&tgt;<M>0</M>.
12
It returns the Baer invariant <M>M^(c)(G)</M> defined as follows.
13
14
For an arbitrary group <M>G</M> let <M>L^*_{c+1}(G)</M> be the
15
<M>(c+1)</M>-st term of the upper central series of the group
16
<M>U=F/[[[R,F],F]...]</M> (with <M>c</M> copies of <M>F</M> in the
17
denominator) where <M>F/R</M> is any free presentation of <M>G</M>.
18
This is an invariant of <M>G</M> and we define <M>M^{(c)}(G)</M>
19
to be the kernel of the canonical homomorphism
20
<M>M^{(c)}(G) \longrightarrow G</M>. For <M>c=1</M>
21
the Baer invariant <M>M^(1)(G)</M> is isomorphic to the second
22
integral homology <M>H_2(G,Z)</M>.
23
<P/>
24
This function requires the NQ package.
25
</Item>
26
</Row>
27
28
<Row>
29
<Item>
30
<Index>BogomolovMultiplier</Index>
31
<C>BogomolovMultiplier(G) </C>
32
<Br/>
33
34
<C>BogomolovMultiplier(G, "standard") </C>
35
<C>BogomolovMultiplier(G, "homology") </C>
36
<C>BogomolovMultiplier(G, "tensor") </C>
37
38
39
<P/>
40
41
Inputs a finite group <M>G</M> and returns the quotient <M>H_2(G,Z)/K(G)</M> of the second integral homology of <M>G</M> where <M>K(G)</M> is the subgroup of
42
<M>H_2(G,Z)</M> generated by the images of all homomorphisms <M>H_2(A,Z) \rightarrow H_2(G,Z)</M> induced from abelian subgroups of <M>G</M>.
43
44
<P/> Three slight variants of the implementation are available. The defaults "standard" implementation seems to work best on average. But for some groups the "homology" implementation or the "tensor" implementation will be faster. The variants are called by including the appropriate string as the second argument.
45
</Item>
46
</Row>
47
48
<Row>
49
<Item>
50
<Index>Bogomology</Index>
51
<C>Bogomology(G,n) </C>
52
<P/>
53
54
Inputs a finite group <M>G</M> and positive integer <M>n</M>, and returns the quotient <M>H_n(G,Z)/K(G)</M> of the degree <M>n</M>
55
integral homology of <M>G</M> where <M>K(G)</M> is the subgroup of
56
<M>H_n(G,Z)</M> generated by the images of all homomorphisms <M>H_n(A,Z) \rightarrow H_n(G,Z)</M> induced from abelian subgroups of <M>G</M>.
57
58
</Item>
59
</Row>
60
61
62
<Row>
63
<Item>
64
<Index> Coclass</Index>
65
<C>Coclass(G) </C>
66
<P/>
67
68
Inputs a group <M>G</M> of prime-power order <M>p^n</M> and nilpotency
69
class <M>c</M> say. It returns the integer <M>r=n-c</M> .
70
</Item>
71
</Row>
72
73
<Row>
74
<Item>
75
<Index> EpiCentre</Index>
76
<C>EpiCentre(G,N) </C>
77
<C>EpiCentre(G)</C>
78
<P/>
79
80
Inputs a finite group <M>G</M> and normal subgroup <M>N</M> and returns
81
a subgroup <M>Z^\ast(G,N)</M> of the centre of <M>N</M>. The group
82
<M>Z^\ast(G,N)</M> is trivial if and only if there is a crossed module
83
<M>d:E \longrightarrow G</M> with <M>N=Image(d)</M> and with <M>Ker(d)</M>
84
equal to the subgroup of <M>E</M> consisting of those elements on which
85
<M>G</M> acts trivially.
86
<P/>
87
If no value for <M>N</M> is entered then it is assumed that <M>N=G</M>.
88
In this case the group <M>Z^\ast(G,G)</M> is trivial if and only if
89
<M>G</M> is isomorphic to a quotient <M>G=E/Z(E)</M> of some group
90
<M>E</M> by the centre of <M>E</M>.
91
(See also the command <M>UpperEpicentralSeries(G,c)</M>. )
92
</Item>
93
</Row>
94
95
<Row>
96
<Item>
97
<Index> NonabelianExteriorProduct</Index>
98
<C>NonabelianExteriorProduct(G,N) </C>
99
<P/>
100
101
Inputs a finite group <M>G</M> and normal subgroup <M>N</M>.
102
It returns a record <M>E</M> with the following components.
103
<List>
104
<Item>
105
<M>E.homomorphism</M> is a group homomorphism <M>� : (G \wedge N) \longrightarrow G</M> from the nonabelian exterior product <M>(G \wedge N)</M> to <M>G</M>.
106
The kernel of <M></M> is the relative Schur multiplier.
107
</Item>
108
<Item>
109
<M>E.pairing(x,y)</M> is a function which inputs an element <M>x</M> in <M>G</M> and an element <M>y</M> in <M>N</M> and returns <M>(x \wedge y)</M>
110
in the exterior product <M>(G \wedge N)</M> .
111
</Item>
112
</List>
113
114
This function should work for reasonably small nilpotent groups or extremely small non-nilpotent groups.
115
</Item>
116
</Row>
117
118
<Row>
119
<Item>
120
<Index> NonabelianSymmetricKernel</Index>
121
<C>NonabelianSymmetricKernel(G) </C>
122
<C>NonabelianSymmetricKernel(G,m) </C>
123
<P/>
124
125
Inputs a finite or nilpotent infinite group <M>G</M>
126
and returns the abelian invariants of the
127
Fourth homotopy group <M>SG</M>
128
of the double suspension <M>SSK(G,1)</M> of the Eilenberg-Mac Lane space <M>K(G,1)</M>.
129
<P/>
130
For non-nilpotent groups the implementation of the function
131
<M>NonabelianSymmetricKernel(G)</M> is far from optimal and will
132
soon be improved. As a temporary solution to this problem, an optional
133
second variable <M>m</M> can be set equal to <M>0</M>, and then the
134
function efficiently returns the abelian invariants of groups <M>A</M> and
135
<M>B</M> such that there is an exact sequence <M>0 \longrightarrow B \longrightarrow SG \longrightarrow A \longrightarrow 0</M>.
136
<P/>
137
Alternatively, the optional second varible <M>m</M> can be set equal to a
138
positive multiple of the order of the symmetric square <M>(G \tilde\otimes G)</M>.
139
In this case the function returns the abelian invariants of <M>SG</M>.
140
This might help when <M>G</M> is solvable but not nilpotent
141
(especially if the estimated upper bound <M>m</M> is reasonable accurate).
142
</Item>
143
</Row>
144
145
<Row>
146
<Item>
147
<Index> NonabelianSymmetricSquare</Index>
148
<C>NonabelianSymmetricSquare(G) </C>
149
<C>NonabelianSymmetricSquare(G,m) </C>
150
<P/>
151
152
Inputs a finite or nilpotent infinite group <M>G</M>
153
and returns a record <M>T</M> with the following components.
154
<List>
155
<Item>
156
<M>T.homomorphism</M> is a group homomorphism
157
<M>� : (G \tilde\otimes G) \longrightarrow G</M>
158
from the nonabelian symmetric square of <M>G</M> to <M>G</M>.
159
The kernel of <M></M> is isomorphic to the fourth homotopy group of
160
the double suspension <M>SSK(G,1)</M> of an Eilenberg-Mac Lane space.
161
</Item>
162
<Item>
163
<M>T.pairing(x,y)</M> is a function which inputs two elements <M>x, y</M> in
164
<M>G</M> and returns the tensor <M>(x \otimes y)</M> in the symmetric square
165
<M>(G \otimes G)</M> .
166
</Item>
167
</List>
168
An optional second varible <M>m</M> can be set equal to a
169
multiple of the order of the symmetric square <M>(G \tilde\otimes G)</M>.
170
This might help when <M>G</M> is solvable but not nilpotent
171
(especially if the estimated upper bound <M>m</M> is reasonable accurate)
172
as the bound is used in the solvable quotient algorithm.
173
<P/>
174
The optional second variable <M>m</M> can also be set equal to <M>0</M>.
175
In this case the Todd-Coxeter procedure will be used to enumerate the
176
symmetric square even when <M>G</M> is solvable.
177
<P/>
178
This function should work for reasonably small solvable groups or extremely small non-solvable groups.
179
</Item>
180
</Row>
181
182
183
<Row>
184
<Item>
185
<Index> NonabelianTensorProduct</Index>
186
<C>NonabelianTensorProduct(G,N) </C>
187
<P/>
188
189
Inputs a finite group <M>G</M> and normal subgroup <M>N</M>.
190
It returns a record <M>E</M> with the following components.
191
<List>
192
<Item>
193
<M>E.homomorphism</M> is a group homomorphism <M>� : (G \otimes N ) \longrightarrow G</M> from the nonabelian exterior product <M>(G \otimes N)</M> to <M>G</M>.
194
</Item>
195
<Item>
196
<M>E.pairing(x,y)</M> is a function which inputs an element <M>x</M> in
197
<M>G</M> and an element <M>y</M> in <M>N</M> and returns <M>(x \otimes y)</M>
198
in the tensor product <M>(G \otimes N)</M> .
199
</Item>
200
</List>
201
202
This function should work for reasonably small nilpotent groups or extremely small non-nilpotent groups.
203
</Item>
204
</Row>
205
206
<Row>
207
<Item>
208
<Index> NonabelianTensorSquare</Index>
209
<C>NonabelianTensorSquare(G) </C>
210
<C>NonabelianTensorSquare(G,m) </C>
211
<P/>
212
213
Inputs a finite or nilpotent infinite group <M>G</M>
214
and returns a record <M>T</M> with the following components.
215
<List>
216
<Item>
217
<M>T.homomorphism</M> is a group homomorphism
218
<M>� : (G \otimes G) \longrightarrow G</M>
219
from the nonabelian tensor square of <M>G</M> to <M>G</M>.
220
The kernel of <M></M> is isomorphic to the third homotopy group of
221
the suspension <M>SK(G,1)</M> of an Eilenberg-Mac Lane space.
222
</Item>
223
<Item>
224
<M>T.pairing(x,y)</M> is a function which inputs two elements <M>x, y</M> in
225
<M>G</M> and returns the tensor <M>(x \otimes y)</M> in the tensor square
226
<M>(G \otimes G)</M> .
227
</Item>
228
</List>
229
An optional second varible <M>m</M> can be set equal to a
230
multiple of the order of the tensor square <M>(G \otimes G)</M>.
231
This might help when <M>G</M> is solvable but not nilpotent
232
(especially if the estimated upper bound <M>m</M> is reasonable accurate)
233
as the bound is used in the solvable quotient algorithm.
234
<P/>
235
The optional second variable <M>m</M> can also be set equal to <M>0</M>.
236
In this case the Todd-Coxeter procedure will be used to enumerate the
237
tensor square even when <M>G</M> is solvable.
238
<P/>
239
This function should work for reasonably small solvable groups or extremely small non-solvable groups.
240
</Item>
241
</Row>
242
243
<Row>
244
<Item>
245
<Index> RelativeSchurMultiplier</Index>
246
<C>RelativeSchurMultiplier(G,N) </C>
247
<P/>
248
249
Inputs a finite group <M>G</M> and normal subgroup <M>N</M>.
250
It returns the homology group <M>H_2(G,N,Z)</M>
251
that fits into the exact sequence
252
<P/>
253
<M>\ldots\longrightarrow H_3(G,Z)
254
\longrightarrow H_3(G/N,Z)
255
\longrightarrow H_2(G,N,Z)
256
\longrightarrow H_3(G,Z)
257
\longrightarrow H_3(G/N,Z)
258
\longrightarrow \ldots.
259
</M>
260
<P/>
261
This function should work for reasonably small nilpotent groups <M>G</M>
262
or extremely small non-nilpotent groups.
263
</Item>
264
</Row>
265
266
<Row>
267
<Item>
268
<Index> TensorCentre</Index>
269
<C>TensorCentre(G) </C>
270
<P/>
271
272
Inputs a group <M>G</M> and returns the largest central subgroup <M>N</M>
273
such that the induced homomorphism of nonabelian tensor squares
274
<M>(G \otimes G) \longrightarrow (G/N \otimes G/N)</M>
275
is an isomorphism. Equivalently, <M>N</M> is the largest central
276
subgroup such that <M>\pi_3(SK(G,1)) \longrightarrow \pi_3(SK(G/N,1))</M>
277
is injective.
278
</Item>
279
</Row>
280
281
<Row>
282
<Item>
283
<Index> ThirdHomotopyGroupOfSuspensionB</Index>
284
<C>ThirdHomotopyGroupOfSuspensionB(G) </C>
285
<C>ThirdHomotopyGroupOfSuspensionB(G,m) </C>
286
<P/>
287
288
Inputs a finite or nilpotent infinite group <M>G</M>
289
and returns the abelian invariants of the third homotopy group <M>JG</M>
290
of the suspension <M>SK(G,1)</M> of the Eilenberg-Mac Lane space <M>K(G,1)</M>.
291
<P/>
292
For non-nilpotent groups the implementation of the function
293
<M>ThirdHomotopyGroupOfSuspensionB(G)</M> is far from optimal and will
294
soon be improved. As a temporary solution to this problem, an optional
295
second variable <M>m</M> can be set equal to <M>0</M>, and then the
296
function efficiently returns the abelian invariants of groups <M>A</M> and
297
<M>B</M> such that there is an exact sequence <M>0 \longrightarrow B \longrightarrow JG \longrightarrow A \longrightarrow 0</M>.
298
<P/>
299
Alternatively, the optional second varible <M>m</M> can be set equal to a
300
positive multiple of the order of the tensor square <M>(G \otimes G)</M>.
301
In this case the function returns the abelian invariants of <M>JG</M>.
302
This might help when <M>G</M> is solvable but not nilpotent
303
(especially if the estimated upper bound <M>m</M> is reasonable accurate).
304
</Item>
305
</Row>
306
307
308
<Row>
309
<Item>
310
<Index> UpperEpicentralSeries</Index>
311
<C>UpperEpicentralSeries(G,c) </C>
312
<P/>
313
314
Inputs a nilpotent group <M>G</M> and an integer <M>c</M>.
315
It returns the <M>c</M>-th term of the upper epicentral series
316
<M>1</M> &tlt; <M> Z_1^\ast(G)</M> &tlt; <M >Z_2^\ast(G)</M> &tlt; <M> \ldots </M>.
317
<P/>
318
The upper epicentral series is defined for an arbitrary group <M>G</M>.
319
The group <M>Z_c^\ast (G)</M> is the image in <M>G</M> of the <M>c</M>-th
320
term <M>Z_c(U)</M> of the upper central series of the group
321
<M>U=F/[[[R,F],F] \ldots ]</M> (with <M>c</M> copies of <M>F</M> in the
322
denominator) where <M>F/R</M> is any free presentation of <M>G</M>.
323
<P/>
324
This functions requires the NQ package.
325
</Item>
326
</Row>
327
</Table>
328
</Chapter>
329
330
331
332