Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
Project: cocalc-sagemath-dev-slelievre
Views: 418346<Chapter><Heading> Commutator and nonabelian tensor computations</Heading>12<Table Align="|l|" >34<Row>5<Item>6<Index>BaerInvariant</Index>7<C>BaerInvariant(G,c) </C>8<P/>910Inputs a nilpotent group <M>G</M> and integer <M>c</M>&tgt;<M>0</M>.11It returns the Baer invariant <M>M^(c)(G)</M> defined as follows.1213For an arbitrary group <M>G</M> let <M>L^*_{c+1}(G)</M> be the14<M>(c+1)</M>-st term of the upper central series of the group15<M>U=F/[[[R,F],F]...]</M> (with <M>c</M> copies of <M>F</M> in the16denominator) where <M>F/R</M> is any free presentation of <M>G</M>.17This is an invariant of <M>G</M> and we define <M>M^{(c)}(G)</M>18to be the kernel of the canonical homomorphism19<M>M^{(c)}(G) \longrightarrow G</M>. For <M>c=1</M>20the Baer invariant <M>M^(1)(G)</M> is isomorphic to the second21integral homology <M>H_2(G,Z)</M>.22<P/>23This function requires the NQ package.24</Item>25</Row>2627<Row>28<Item>29<Index>BogomolovMultiplier</Index>30<C>BogomolovMultiplier(G) </C>31<Br/>3233<C>BogomolovMultiplier(G, "standard") </C>34<C>BogomolovMultiplier(G, "homology") </C>35<C>BogomolovMultiplier(G, "tensor") </C>363738<P/>3940Inputs a finite group <M>G</M> and returns the quotient <M>H_2(G,Z)/K(G)</M> of the second integral homology of <M>G</M> where <M>K(G)</M> is the subgroup of41<M>H_2(G,Z)</M> generated by the images of all homomorphisms <M>H_2(A,Z) \rightarrow H_2(G,Z)</M> induced from abelian subgroups of <M>G</M>.4243<P/> Three slight variants of the implementation are available. The defaults "standard" implementation seems to work best on average. But for some groups the "homology" implementation or the "tensor" implementation will be faster. The variants are called by including the appropriate string as the second argument.44</Item>45</Row>4647<Row>48<Item>49<Index>Bogomology</Index>50<C>Bogomology(G,n) </C>51<P/>5253Inputs a finite group <M>G</M> and positive integer <M>n</M>, and returns the quotient <M>H_n(G,Z)/K(G)</M> of the degree <M>n</M>54integral homology of <M>G</M> where <M>K(G)</M> is the subgroup of55<M>H_n(G,Z)</M> generated by the images of all homomorphisms <M>H_n(A,Z) \rightarrow H_n(G,Z)</M> induced from abelian subgroups of <M>G</M>.5657</Item>58</Row>596061<Row>62<Item>63<Index> Coclass</Index>64<C>Coclass(G) </C>65<P/>6667Inputs a group <M>G</M> of prime-power order <M>p^n</M> and nilpotency68class <M>c</M> say. It returns the integer <M>r=n-c</M> .69</Item>70</Row>7172<Row>73<Item>74<Index> EpiCentre</Index>75<C>EpiCentre(G,N) </C>76<C>EpiCentre(G)</C>77<P/>7879Inputs a finite group <M>G</M> and normal subgroup <M>N</M> and returns80a subgroup <M>Z^\ast(G,N)</M> of the centre of <M>N</M>. The group81<M>Z^\ast(G,N)</M> is trivial if and only if there is a crossed module82<M>d:E \longrightarrow G</M> with <M>N=Image(d)</M> and with <M>Ker(d)</M>83equal to the subgroup of <M>E</M> consisting of those elements on which84<M>G</M> acts trivially.85<P/>86If no value for <M>N</M> is entered then it is assumed that <M>N=G</M>.87In this case the group <M>Z^\ast(G,G)</M> is trivial if and only if88<M>G</M> is isomorphic to a quotient <M>G=E/Z(E)</M> of some group89<M>E</M> by the centre of <M>E</M>.90(See also the command <M>UpperEpicentralSeries(G,c)</M>. )91</Item>92</Row>9394<Row>95<Item>96<Index> NonabelianExteriorProduct</Index>97<C>NonabelianExteriorProduct(G,N) </C>98<P/>99100Inputs a finite group <M>G</M> and normal subgroup <M>N</M>.101It returns a record <M>E</M> with the following components.102<List>103<Item>104<M>E.homomorphism</M> is a group homomorphism <M>� : (G \wedge N) \longrightarrow G</M> from the nonabelian exterior product <M>(G \wedge N)</M> to <M>G</M>.105The kernel of <M>�</M> is the relative Schur multiplier.106</Item>107<Item>108<M>E.pairing(x,y)</M> is a function which inputs an element <M>x</M> in <M>G</M> and an element <M>y</M> in <M>N</M> and returns <M>(x \wedge y)</M>109in the exterior product <M>(G \wedge N)</M> .110</Item>111</List>112113This function should work for reasonably small nilpotent groups or extremely small non-nilpotent groups.114</Item>115</Row>116117<Row>118<Item>119<Index> NonabelianSymmetricKernel</Index>120<C>NonabelianSymmetricKernel(G) </C>121<C>NonabelianSymmetricKernel(G,m) </C>122<P/>123124Inputs a finite or nilpotent infinite group <M>G</M>125and returns the abelian invariants of the126Fourth homotopy group <M>SG</M>127of the double suspension <M>SSK(G,1)</M> of the Eilenberg-Mac Lane space <M>K(G,1)</M>.128<P/>129For non-nilpotent groups the implementation of the function130<M>NonabelianSymmetricKernel(G)</M> is far from optimal and will131soon be improved. As a temporary solution to this problem, an optional132second variable <M>m</M> can be set equal to <M>0</M>, and then the133function efficiently returns the abelian invariants of groups <M>A</M> and134<M>B</M> such that there is an exact sequence <M>0 \longrightarrow B \longrightarrow SG \longrightarrow A \longrightarrow 0</M>.135<P/>136Alternatively, the optional second varible <M>m</M> can be set equal to a137positive multiple of the order of the symmetric square <M>(G \tilde\otimes G)</M>.138In this case the function returns the abelian invariants of <M>SG</M>.139This might help when <M>G</M> is solvable but not nilpotent140(especially if the estimated upper bound <M>m</M> is reasonable accurate).141</Item>142</Row>143144<Row>145<Item>146<Index> NonabelianSymmetricSquare</Index>147<C>NonabelianSymmetricSquare(G) </C>148<C>NonabelianSymmetricSquare(G,m) </C>149<P/>150151Inputs a finite or nilpotent infinite group <M>G</M>152and returns a record <M>T</M> with the following components.153<List>154<Item>155<M>T.homomorphism</M> is a group homomorphism156<M>� : (G \tilde\otimes G) \longrightarrow G</M>157from the nonabelian symmetric square of <M>G</M> to <M>G</M>.158The kernel of <M>�</M> is isomorphic to the fourth homotopy group of159the double suspension <M>SSK(G,1)</M> of an Eilenberg-Mac Lane space.160</Item>161<Item>162<M>T.pairing(x,y)</M> is a function which inputs two elements <M>x, y</M> in163<M>G</M> and returns the tensor <M>(x \otimes y)</M> in the symmetric square164<M>(G \otimes G)</M> .165</Item>166</List>167An optional second varible <M>m</M> can be set equal to a168multiple of the order of the symmetric square <M>(G \tilde\otimes G)</M>.169This might help when <M>G</M> is solvable but not nilpotent170(especially if the estimated upper bound <M>m</M> is reasonable accurate)171as the bound is used in the solvable quotient algorithm.172<P/>173The optional second variable <M>m</M> can also be set equal to <M>0</M>.174In this case the Todd-Coxeter procedure will be used to enumerate the175symmetric square even when <M>G</M> is solvable.176<P/>177This function should work for reasonably small solvable groups or extremely small non-solvable groups.178</Item>179</Row>180181182<Row>183<Item>184<Index> NonabelianTensorProduct</Index>185<C>NonabelianTensorProduct(G,N) </C>186<P/>187188Inputs a finite group <M>G</M> and normal subgroup <M>N</M>.189It returns a record <M>E</M> with the following components.190<List>191<Item>192<M>E.homomorphism</M> is a group homomorphism <M>� : (G \otimes N ) \longrightarrow G</M> from the nonabelian exterior product <M>(G \otimes N)</M> to <M>G</M>.193</Item>194<Item>195<M>E.pairing(x,y)</M> is a function which inputs an element <M>x</M> in196<M>G</M> and an element <M>y</M> in <M>N</M> and returns <M>(x \otimes y)</M>197in the tensor product <M>(G \otimes N)</M> .198</Item>199</List>200201This function should work for reasonably small nilpotent groups or extremely small non-nilpotent groups.202</Item>203</Row>204205<Row>206<Item>207<Index> NonabelianTensorSquare</Index>208<C>NonabelianTensorSquare(G) </C>209<C>NonabelianTensorSquare(G,m) </C>210<P/>211212Inputs a finite or nilpotent infinite group <M>G</M>213and returns a record <M>T</M> with the following components.214<List>215<Item>216<M>T.homomorphism</M> is a group homomorphism217<M>� : (G \otimes G) \longrightarrow G</M>218from the nonabelian tensor square of <M>G</M> to <M>G</M>.219The kernel of <M>�</M> is isomorphic to the third homotopy group of220the suspension <M>SK(G,1)</M> of an Eilenberg-Mac Lane space.221</Item>222<Item>223<M>T.pairing(x,y)</M> is a function which inputs two elements <M>x, y</M> in224<M>G</M> and returns the tensor <M>(x \otimes y)</M> in the tensor square225<M>(G \otimes G)</M> .226</Item>227</List>228An optional second varible <M>m</M> can be set equal to a229multiple of the order of the tensor square <M>(G \otimes G)</M>.230This might help when <M>G</M> is solvable but not nilpotent231(especially if the estimated upper bound <M>m</M> is reasonable accurate)232as the bound is used in the solvable quotient algorithm.233<P/>234The optional second variable <M>m</M> can also be set equal to <M>0</M>.235In this case the Todd-Coxeter procedure will be used to enumerate the236tensor square even when <M>G</M> is solvable.237<P/>238This function should work for reasonably small solvable groups or extremely small non-solvable groups.239</Item>240</Row>241242<Row>243<Item>244<Index> RelativeSchurMultiplier</Index>245<C>RelativeSchurMultiplier(G,N) </C>246<P/>247248Inputs a finite group <M>G</M> and normal subgroup <M>N</M>.249It returns the homology group <M>H_2(G,N,Z)</M>250that fits into the exact sequence251<P/>252<M>\ldots\longrightarrow H_3(G,Z)253\longrightarrow H_3(G/N,Z)254\longrightarrow H_2(G,N,Z)255\longrightarrow H_3(G,Z)256\longrightarrow H_3(G/N,Z)257\longrightarrow \ldots.258</M>259<P/>260This function should work for reasonably small nilpotent groups <M>G</M>261or extremely small non-nilpotent groups.262</Item>263</Row>264265<Row>266<Item>267<Index> TensorCentre</Index>268<C>TensorCentre(G) </C>269<P/>270271Inputs a group <M>G</M> and returns the largest central subgroup <M>N</M>272such that the induced homomorphism of nonabelian tensor squares273<M>(G \otimes G) \longrightarrow (G/N \otimes G/N)</M>274is an isomorphism. Equivalently, <M>N</M> is the largest central275subgroup such that <M>\pi_3(SK(G,1)) \longrightarrow \pi_3(SK(G/N,1))</M>276is injective.277</Item>278</Row>279280<Row>281<Item>282<Index> ThirdHomotopyGroupOfSuspensionB</Index>283<C>ThirdHomotopyGroupOfSuspensionB(G) </C>284<C>ThirdHomotopyGroupOfSuspensionB(G,m) </C>285<P/>286287Inputs a finite or nilpotent infinite group <M>G</M>288and returns the abelian invariants of the third homotopy group <M>JG</M>289of the suspension <M>SK(G,1)</M> of the Eilenberg-Mac Lane space <M>K(G,1)</M>.290<P/>291For non-nilpotent groups the implementation of the function292<M>ThirdHomotopyGroupOfSuspensionB(G)</M> is far from optimal and will293soon be improved. As a temporary solution to this problem, an optional294second variable <M>m</M> can be set equal to <M>0</M>, and then the295function efficiently returns the abelian invariants of groups <M>A</M> and296<M>B</M> such that there is an exact sequence <M>0 \longrightarrow B \longrightarrow JG \longrightarrow A \longrightarrow 0</M>.297<P/>298Alternatively, the optional second varible <M>m</M> can be set equal to a299positive multiple of the order of the tensor square <M>(G \otimes G)</M>.300In this case the function returns the abelian invariants of <M>JG</M>.301This might help when <M>G</M> is solvable but not nilpotent302(especially if the estimated upper bound <M>m</M> is reasonable accurate).303</Item>304</Row>305306307<Row>308<Item>309<Index> UpperEpicentralSeries</Index>310<C>UpperEpicentralSeries(G,c) </C>311<P/>312313Inputs a nilpotent group <M>G</M> and an integer <M>c</M>.314It returns the <M>c</M>-th term of the upper epicentral series315<M>1</M> &tlt; <M> Z_1^\ast(G)</M> &tlt; <M >Z_2^\ast(G)</M> &tlt; <M> \ldots </M>.316<P/>317The upper epicentral series is defined for an arbitrary group <M>G</M>.318The group <M>Z_c^\ast (G)</M> is the image in <M>G</M> of the <M>c</M>-th319term <M>Z_c(U)</M> of the upper central series of the group320<M>U=F/[[[R,F],F] \ldots ]</M> (with <M>c</M> copies of <M>F</M> in the321denominator) where <M>F/R</M> is any free presentation of <M>G</M>.322<P/>323This functions requires the NQ package.324</Item>325</Row>326</Table>327</Chapter>328329330331332