Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
Project: cocalc-sagemath-dev-slelievre
Views: 418346<Chapter><Heading> Orbit polytopes and fundamental domains</Heading>12<Table Align="|l|" >3<Row>4<Item>5<Index> CoxeterComplex</Index>6<C>CoxeterComplex(D)</C>7<C>CoxeterComplex(D,n)</C>8<P/>9Inputs a Coxeter diagram <M>D</M> of finite type. It returns a non-free ZW-resolution for the associated Coxeter group <M>W</M>. The non-free resolution is obtained from the permutahedron of type <M>W</M>. A positive integer <M>n</M>10can be entered as an optional second variable; just the first <M>n</M> terms of the non-free resolution are then returned.11</Item>12</Row>1314<Row>15<Item>16<Index> ContractibleGcomplex</Index>17<C>ContractibleGcomplex("PSL(4,Z)")</C>18<P/>19Inputs one of the following strings: <Br/><Br/>20"SL(2,Z)" , "SL(3,Z)" , "PGL(3,Z[i])" , "PGL(3,Eisenstein_Integers)" ,21"PSL(4,Z)" , "PSL(4,Z)_b" , "PSL(4,Z)_c" , "PSL(4,Z)_d" ,22"Sp(4,Z)"23<Br/><Br/>24or one of the following strings <Br/><Br/>25"SL(2,O-2)" , "SL(2,O-7)" , "SL(2,O-11)" ,26"SL(2,O-19)" , "SL(2,O-43)" , "SL(2,O-67)" ,27"SL(2,O-163)" <Br/><Br/>28It29returns a non-free ZG-resolution for the group <M>G</M> described by the string. The stabilizer groups of cells are finite. (Subscripts _b , _c , _d denote alternative non-free ZG-resolutions for a given group G.)<Br/><Br/>3031Data for the first list of non-free resolutions was provided provided by <B>Mathieu Dutour</B>. Data for the second list was provided by <B>Alexander Rahm</B>.32</Item>33</Row>3435<Row>36<Item>37<Index> QuotientOfContractibleGcomplex</Index>38<C>QuotientOfContractibleGcomplex(C,D)</C>39<P/>40Inputs41a non-free <M>ZG</M>-resolution <M>C</M> and a finite subgroup <M>D</M> of <M>G</M> which is42a subgroup of each cell stabilizer group for <M>C</M>. Each element of <M>D</M> must preserves the orientation of any cell stabilized by it.43It returns the corresponding non-free44<M>Z(G/D)</M>-resolution. (So, for instance, from the <M>SL(2,O)</M> complex <M>C=ContractibleGcomplex("SL(2,O-2)");</M> we can construct a <M>PSL(2,O)</M>-complex using this function.)4546</Item>47</Row>4849505152<Row>53<Item>54<Index> TruncatedGComplex</Index>55<C>TruncatedGComplex(R,m,n)</C>56<P/>57Inputs58a non-free <M>ZG</M>-resolution <M>R</M> and two positive59integers <M>m </M> and <M> n </M>.60It returns the non-free <M>ZG</M>-resolution consisting of those modules in <M>R</M> of degree at least <M>m</M> and at most <M>n</M>.61</Item>62</Row>636465<Row>66<Item>67<Index> FundamentalDomainStandardSpaceGroup (HAPcryst)</Index>68<C>FundamentalDomainStandardSpaceGroup(v,G)</C>69<P/>70Inputs a crystallographic71group G (represented using AffineCrystGroupOnRight as in72the GAP package Cryst). It also inputs a choice of vector v in the euclidean space <M>R^n</M> on which <M>G</M> acts. It returns the73Dirichlet-Voronoi fundamental cell for the74action of <M>G</M>75on euclidean space corresponding to the vector <M>v</M>. The fundamental76cell is a fundamental domain if <M>G</M> is Bieberbach. The fundamental77cell/domain is returned as a <Quoted>Polymake object</Quoted>. Currently the function only applies to certain crystallographic groups. See the manuals to HAPcryst and HAPpolymake for full details.78<P/>79This function is part of the HAPcryst package written by <B>Marc Roeder</B> and is thus only available if HAPcryst is loaded.80<P/>81The function requires the use of Polymake software.82</Item>83</Row>8485<Row>86<Item>87<Index>OrbitPolytope</Index>88<C>OrbitPolytope(G,v,L) </C>89<P/>9091Inputs a permutation group or matrix group <M>G</M> of degree <M>n</M>92and a rational vector <M>v</M> of length <M>n</M>.93In both cases there is a natural action of <M>G</M> on <M>v</M>.94Let <M>P(G,v)</M> be the convex polytope arising as the convex hull95of the Euclidean points in the orbit of <M>v</M> under the action of96<M>G</M>. The function also inputs a sublist <M>L</M> of the97following list of strings:98<P/>99["dimension","vertex_degree", "visual_graph", "schlegel","visual"]100<P/>101Depending on the sublist, the function:102<List>103<Item> prints the dimension of the orbit polytope <M>P(G,v)</M>;</Item>104<Item> prints the degree of a vertex in the graph of <M>P(G,v)</M>;</Item>105<Item> visualizes the graph of <M>P(G,v)</M>;</Item>106<Item> visualizes the Schlegel diagram of <M>P(G,v)</M>;</Item>107<Item> visualizes <M>P(G,v)</M> if the polytope is of dimension 2 or 3.</Item>108</List>109The function uses Polymake software.110111</Item>112</Row>113114115<Row>116<Item>117<Index> PolytopalComplex</Index>118<C>PolytopalComplex(G,v) </C>119<C>PolytopalComplex(G,v,n) </C>120<P/>121122Inputs a permutation group or matrix group <M>G</M>123of degree <M>n</M> and a rational vector <M>v</M> of length <M>n</M>.124In both cases there is a natural action of <M>G</M> on <M>v</M>.125Let <M>P(G,v)</M> be the convex polytope arising as the convex126hull of the Euclidean points in the orbit of <M>v</M> under the action of127<M>G</M>. The cellular chain complex <M>C_*=C_*(P(G,v))</M>128is an exact sequence of (not necessarily free) <M>ZG</M>-modules.129The function returns a component object <M>R</M> with components:130<List>131<Item>132<M>R!.dimension(k)</M> is a function which returns the number of <M>G</M>-orbits133of the <M>k</M>-dimensional faces in <M>P(G,v)</M>. If each <M>k</M>-face134has trivial stabilizer subgroup in <M>G</M> then <M>C_k</M>135is a free <M>ZG</M>-module of rank <M>R.dimension(k)</M>.136</Item>137<Item>138<M>R!.stabilizer(k,n)</M> is a function which returns the139stabilizer subgroup for a face in the <M>n</M>-th orbit of <M>k</M>-faces.140</Item>141<Item>142If all faces of dimension &tlt;<M>k+1</M> have trivial stabilizer143group then the first <M>k</M> terms of <M>C_*</M> constitute part of a144free <M>ZG</M>-resolution. The boundary map is described by the145function <M>boundary(k,n)</M> . (If some faces have non-trivial146stabilizer group then <M>C_*</M> is not free and no attempt is147made to determine signs for the boundary map.)148</Item>149<Item>150<M>R!.elements</M>, <M>R!.group</M>, <M>R!.properties</M>151are as in a <M>ZG</M>-resolution.152</Item>153</List>154If an optional third input variable <M>n</M>155is used, then only the first <M>n</M> terms of the resolution156<M>C_*</M> will be computed.157<P/>158The function uses Polymake software.159</Item>160</Row>161162163<Row>164<Item>165<Index> PolytopalGenerators</Index>166<C>PolytopalGenerators(G,v) </C>167<P/>168169170Inputs a permutation group or matrix group <M>G</M> of degree <M>n</M> and171a rational vector <M>v</M> of length <M>n</M>. In both cases there172is a natural action of <M>G</M> on <M>v</M>, and the vector <M>v</M>173must be chosen so that it has trivial stabilizer subgroup in <M>G</M>.174Let <M>P(G,v)</M> be the convex polytope arising as the convex175hull of the Euclidean points in the orbit of <M>v</M>176under the action of <M>G</M>. The function returns a record <M>P</M>177with components:178<List>179<Item> <M>P.generators</M> is a list of all those elements <M>g</M> in <M>G</M>180such that <M>g\cdot v</M> has an edge in common with <M>v</M>.181The list is a generating set for <M>G</M>.</Item>182<Item>183<M>P.vector</M> is the vector <M>v</M>.</Item>184<Item><M>P.hasseDiagram</M> is the Hasse diagram of the cone at <M>v</M>.185</Item>186</List>187The function uses Polymake software.188The function is joint work with Seamus Kelly.189</Item>190</Row>191192193194<Row>195<Item>196<Index>VectorStabilizer</Index>197<C>VectorStabilizer(G,v) </C>198<P/>199200Inputs a permutation group or matrix group <M>G</M> of degree <M>n</M>201and a rational vector of degree <M>n</M>. In both cases there is a202natural action of <M>G</M> on <M>v</M> and the function203returns the group of elements in <M>G</M> that fix <M>v</M>.204</Item>205</Row>206207</Table>208</Chapter>209210211212213