CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutSign UpSign In

Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.

| Download

GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it

Views: 418346
1
<Chapter><Heading> Orbit polytopes and fundamental domains</Heading>
2
3
<Table Align="|l|" >
4
<Row>
5
<Item>
6
<Index> CoxeterComplex</Index>
7
<C>CoxeterComplex(D)</C>
8
<C>CoxeterComplex(D,n)</C>
9
<P/>
10
Inputs a Coxeter diagram <M>D</M> of finite type. It returns a non-free ZW-resolution for the associated Coxeter group <M>W</M>. The non-free resolution is obtained from the permutahedron of type <M>W</M>. A positive integer <M>n</M>
11
can be entered as an optional second variable; just the first <M>n</M> terms of the non-free resolution are then returned.
12
</Item>
13
</Row>
14
15
<Row>
16
<Item>
17
<Index> ContractibleGcomplex</Index>
18
<C>ContractibleGcomplex("PSL(4,Z)")</C>
19
<P/>
20
Inputs one of the following strings: <Br/><Br/>
21
"SL(2,Z)" , "SL(3,Z)" , "PGL(3,Z[i])" , "PGL(3,Eisenstein_Integers)" ,
22
"PSL(4,Z)" , "PSL(4,Z)_b" , "PSL(4,Z)_c" , "PSL(4,Z)_d" ,
23
"Sp(4,Z)"
24
<Br/><Br/>
25
or one of the following strings <Br/><Br/>
26
"SL(2,O-2)" , "SL(2,O-7)" , "SL(2,O-11)" ,
27
"SL(2,O-19)" , "SL(2,O-43)" , "SL(2,O-67)" ,
28
"SL(2,O-163)" <Br/><Br/>
29
It
30
returns a non-free ZG-resolution for the group <M>G</M> described by the string. The stabilizer groups of cells are finite. (Subscripts _b , _c , _d denote alternative non-free ZG-resolutions for a given group G.)<Br/><Br/>
31
32
Data for the first list of non-free resolutions was provided provided by <B>Mathieu Dutour</B>. Data for the second list was provided by <B>Alexander Rahm</B>.
33
</Item>
34
</Row>
35
36
<Row>
37
<Item>
38
<Index> QuotientOfContractibleGcomplex</Index>
39
<C>QuotientOfContractibleGcomplex(C,D)</C>
40
<P/>
41
Inputs
42
a non-free <M>ZG</M>-resolution <M>C</M> and a finite subgroup <M>D</M> of <M>G</M> which is
43
a subgroup of each cell stabilizer group for <M>C</M>. Each element of <M>D</M> must preserves the orientation of any cell stabilized by it.
44
It returns the corresponding non-free
45
<M>Z(G/D)</M>-resolution. (So, for instance, from the <M>SL(2,O)</M> complex <M>C=ContractibleGcomplex("SL(2,O-2)");</M> we can construct a <M>PSL(2,O)</M>-complex using this function.)
46
47
</Item>
48
</Row>
49
50
51
52
53
<Row>
54
<Item>
55
<Index> TruncatedGComplex</Index>
56
<C>TruncatedGComplex(R,m,n)</C>
57
<P/>
58
Inputs
59
a non-free <M>ZG</M>-resolution <M>R</M> and two positive
60
integers <M>m </M> and <M> n </M>.
61
It returns the non-free <M>ZG</M>-resolution consisting of those modules in <M>R</M> of degree at least <M>m</M> and at most <M>n</M>.
62
</Item>
63
</Row>
64
65
66
<Row>
67
<Item>
68
<Index> FundamentalDomainStandardSpaceGroup (HAPcryst)</Index>
69
<C>FundamentalDomainStandardSpaceGroup(v,G)</C>
70
<P/>
71
Inputs a crystallographic
72
group G (represented using AffineCrystGroupOnRight as in
73
the GAP package Cryst). It also inputs a choice of vector v in the euclidean space <M>R^n</M> on which <M>G</M> acts. It returns the
74
Dirichlet-Voronoi fundamental cell for the
75
action of <M>G</M>
76
on euclidean space corresponding to the vector <M>v</M>. The fundamental
77
cell is a fundamental domain if <M>G</M> is Bieberbach. The fundamental
78
cell/domain is returned as a <Quoted>Polymake object</Quoted>. Currently the function only applies to certain crystallographic groups. See the manuals to HAPcryst and HAPpolymake for full details.
79
<P/>
80
This function is part of the HAPcryst package written by <B>Marc Roeder</B> and is thus only available if HAPcryst is loaded.
81
<P/>
82
The function requires the use of Polymake software.
83
</Item>
84
</Row>
85
86
<Row>
87
<Item>
88
<Index>OrbitPolytope</Index>
89
<C>OrbitPolytope(G,v,L) </C>
90
<P/>
91
92
Inputs a permutation group or matrix group <M>G</M> of degree <M>n</M>
93
and a rational vector <M>v</M> of length <M>n</M>.
94
In both cases there is a natural action of <M>G</M> on <M>v</M>.
95
Let <M>P(G,v)</M> be the convex polytope arising as the convex hull
96
of the Euclidean points in the orbit of <M>v</M> under the action of
97
<M>G</M>. The function also inputs a sublist <M>L</M> of the
98
following list of strings:
99
<P/>
100
["dimension","vertex_degree", "visual_graph", "schlegel","visual"]
101
<P/>
102
Depending on the sublist, the function:
103
<List>
104
<Item> prints the dimension of the orbit polytope <M>P(G,v)</M>;</Item>
105
<Item> prints the degree of a vertex in the graph of <M>P(G,v)</M>;</Item>
106
<Item> visualizes the graph of <M>P(G,v)</M>;</Item>
107
<Item> visualizes the Schlegel diagram of <M>P(G,v)</M>;</Item>
108
<Item> visualizes <M>P(G,v)</M> if the polytope is of dimension 2 or 3.</Item>
109
</List>
110
The function uses Polymake software.
111
112
</Item>
113
</Row>
114
115
116
<Row>
117
<Item>
118
<Index> PolytopalComplex</Index>
119
<C>PolytopalComplex(G,v) </C>
120
<C>PolytopalComplex(G,v,n) </C>
121
<P/>
122
123
Inputs a permutation group or matrix group <M>G</M>
124
of degree <M>n</M> and a rational vector <M>v</M> of length <M>n</M>.
125
In both cases there is a natural action of <M>G</M> on <M>v</M>.
126
Let <M>P(G,v)</M> be the convex polytope arising as the convex
127
hull of the Euclidean points in the orbit of <M>v</M> under the action of
128
<M>G</M>. The cellular chain complex <M>C_*=C_*(P(G,v))</M>
129
is an exact sequence of (not necessarily free) <M>ZG</M>-modules.
130
The function returns a component object <M>R</M> with components:
131
<List>
132
<Item>
133
<M>R!.dimension(k)</M> is a function which returns the number of <M>G</M>-orbits
134
of the <M>k</M>-dimensional faces in <M>P(G,v)</M>. If each <M>k</M>-face
135
has trivial stabilizer subgroup in <M>G</M> then <M>C_k</M>
136
is a free <M>ZG</M>-module of rank <M>R.dimension(k)</M>.
137
</Item>
138
<Item>
139
<M>R!.stabilizer(k,n)</M> is a function which returns the
140
stabilizer subgroup for a face in the <M>n</M>-th orbit of <M>k</M>-faces.
141
</Item>
142
<Item>
143
If all faces of dimension &tlt;<M>k+1</M> have trivial stabilizer
144
group then the first <M>k</M> terms of <M>C_*</M> constitute part of a
145
free <M>ZG</M>-resolution. The boundary map is described by the
146
function <M>boundary(k,n)</M> . (If some faces have non-trivial
147
stabilizer group then <M>C_*</M> is not free and no attempt is
148
made to determine signs for the boundary map.)
149
</Item>
150
<Item>
151
<M>R!.elements</M>, <M>R!.group</M>, <M>R!.properties</M>
152
are as in a <M>ZG</M>-resolution.
153
</Item>
154
</List>
155
If an optional third input variable <M>n</M>
156
is used, then only the first <M>n</M> terms of the resolution
157
<M>C_*</M> will be computed.
158
<P/>
159
The function uses Polymake software.
160
</Item>
161
</Row>
162
163
164
<Row>
165
<Item>
166
<Index> PolytopalGenerators</Index>
167
<C>PolytopalGenerators(G,v) </C>
168
<P/>
169
170
171
Inputs a permutation group or matrix group <M>G</M> of degree <M>n</M> and
172
a rational vector <M>v</M> of length <M>n</M>. In both cases there
173
is a natural action of <M>G</M> on <M>v</M>, and the vector <M>v</M>
174
must be chosen so that it has trivial stabilizer subgroup in <M>G</M>.
175
Let <M>P(G,v)</M> be the convex polytope arising as the convex
176
hull of the Euclidean points in the orbit of <M>v</M>
177
under the action of <M>G</M>. The function returns a record <M>P</M>
178
with components:
179
<List>
180
<Item> <M>P.generators</M> is a list of all those elements <M>g</M> in <M>G</M>
181
such that <M>g\cdot v</M> has an edge in common with <M>v</M>.
182
The list is a generating set for <M>G</M>.</Item>
183
<Item>
184
<M>P.vector</M> is the vector <M>v</M>.</Item>
185
<Item><M>P.hasseDiagram</M> is the Hasse diagram of the cone at <M>v</M>.
186
</Item>
187
</List>
188
The function uses Polymake software.
189
The function is joint work with Seamus Kelly.
190
</Item>
191
</Row>
192
193
194
195
<Row>
196
<Item>
197
<Index>VectorStabilizer</Index>
198
<C>VectorStabilizer(G,v) </C>
199
<P/>
200
201
Inputs a permutation group or matrix group <M>G</M> of degree <M>n</M>
202
and a rational vector of degree <M>n</M>. In both cases there is a
203
natural action of <M>G</M> on <M>v</M> and the function
204
returns the group of elements in <M>G</M> that fix <M>v</M>.
205
</Item>
206
</Row>
207
208
</Table>
209
</Chapter>
210
211
212
213