CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutSign UpSign In

Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.

| Download

GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it

Views: 418346
1
<Chapter><Heading>Resolutions of the ground ring</Heading>
2
3
4
<Table Align="|l|" >
5
6
<Row>
7
<Item>
8
<Index>TietzeReducedResolution</Index>
9
<C>TietzeReducedResolution(R)</C>
10
<P/>
11
12
Inputs a <M>\mathbb ZG</M>-resolution <M>R</M> and returns a <M>\mathbb ZG</M>-resolution <M>S</M> which is obtained from <M>R</M> by applying "Tietze like operations" in each dimension. The hope is that <M>S</M> has fewer free generators than <M>R</M>.
13
</Item>
14
</Row>
15
16
<Row>
17
<Item>
18
<Index> ResolutionArithmeticGroup</Index>
19
<C>ResolutionArithmeticGroup("PSL(4,Z)",n)</C>
20
<P/>
21
Inputs a positive integer <M>n</M> and one of the following strings: <Br/><Br/>
22
"SL(2,Z)" , "SL(3,Z)" , "PGL(3,Z[i])" , "PGL(3,Eisenstein_Integers)" ,
23
"PSL(4,Z)" , "PSL(4,Z)_b" , "PSL(4,Z)_c" , "PSL(4,Z)_d" ,
24
"Sp(4,Z)"
25
<Br/><Br/>
26
or the string <Br/><Br/>
27
"GL(2,O(-d))"
28
<Br/><Br/>
29
for d=1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 26, 43
30
<Br/><Br/>
31
or the string <Br/><Br/>
32
"SL(2,O(-d))"
33
<Br/><Br/>
34
for d=2, 3, 5, 7, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 26, 43, 67, 163
35
<Br/><Br/>
36
or the string <Br/><Br/>
37
"SL(2,O(-d))_a"
38
<Br/><Br/>
39
for d=2, 7, 11, 19.
40
<Br/><Br/>
41
42
It
43
returns <M>n</M> terms of a free ZG-resolution for the group <M>G</M> described by the string. Here O(-d) denotes the ring of integers of Q(sqrt(-d)) and
44
subscripts _a, _b , _c , _d denote alternative non-free ZG-resolutions for a given group G.<Br/><Br/>
45
46
Data for the first list of resolutions was provided provided by <B>Mathieu Dutour</B>. Data for GL(2,O(-d)) was provided by <B>Sebastian Schoenennbeck</B>. Data for SL(2,O(-d)) was provided by<B>Sebastian Schoennenbeck</B> for d &lt;= 26 and by <B>Alexander Rahm</B> for d>26 and for the alternative complexes.</Item>
47
</Row>
48
49
50
<Row>
51
<Item>
52
<Index>FreeGResolution</Index>
53
<C>FreeGResolution(P,n)</C>
54
<C>FreeGResolution(P,n,p)</C>
55
<P/>
56
57
Inputs a non-free <M>ZG</M>-resolution <M>P</M> with finite stabilizer groups,
58
and
59
a positive integer <M>n</M>. It returns a free
60
<M>ZG</M>-resolution of length equal to the minimum of n and the length of <M>P</M>.
61
If one requires only a mod <M>p</M> resolution then the prime <M>p</M> can be entered as an optional third argument.
62
63
<P/> The free resolution is returned without a contracting homotopy.
64
</Item>
65
</Row>
66
67
<Row>
68
<Item>
69
<Index>ResolutionGTree</Index>
70
<C>ResolutionGTree(P,n)</C>
71
<P/>
72
73
Inputs a non-free <M>ZG</M>-resolution <M>P</M> of dimension 1 (i.e. a G-tree)
74
with finite stabilizer groups,
75
and
76
a positive integer <M>n</M>. It returns a free
77
<M>ZG</M>-resolution of length equal to n.
78
79
<P/> If <M>P</M> has a contracting homotopy then the free resolution is returned with a contracting homotopy.
80
81
<P/> This function was written by <B> Bui Anh Tuan</B>.
82
</Item>
83
</Row>
84
85
<Row>
86
<Item>
87
<Index>ResolutionSL2Z</Index>
88
<C>ResolutionSL2Z(p,n)</C>
89
<P/>
90
91
Inputs positive
92
integers <M>m, n</M> and
93
returns <M>n</M> terms of a
94
<M>ZG</M>-resolution for the group <M>G=SL(2,Z[1/m])</M> .
95
<P/>
96
97
<P/> This function is joint work with <B>Bui Anh Tuan</B>.
98
</Item>
99
</Row>
100
101
102
103
104
<Row>
105
<Item>
106
<Index>ResolutionAbelianGroup</Index>
107
<C>ResolutionAbelianGroup(L,n)</C>
108
<C>ResolutionAbelianGroup(G,n)</C>
109
<P/>
110
111
Inputs a list <M>L:=[m_1,m_2, ..., m_d]</M> of nonnegative integers,
112
and a positive integer <M>n</M>. It returns <M>n</M> terms of a
113
<M>{\mathbb Z}G</M>-resolution for the abelian group <M>G=Z_{L[1]}+Z_{L[2]}+���+{Z_L[d]}</M> .
114
<P/>
115
If <M>G</M> is finite then the first argument can also be the abelian
116
group <M>G</M> itself.
117
</Item>
118
</Row>
119
120
<Row>
121
<Item>
122
<Index>ResolutionAlmostCrystalGroup</Index>
123
<C>ResolutionAlmostCrystalGroup(G,n)</C>
124
<P/>
125
126
Inputs a positive integer <M>n</M> and an almost crystallographic pcp group
127
<M>G</M>. It returns <M>n</M> terms of a free <M>ZG</M>-resolution.
128
(A group is almost crystallographic if it is nilpotent-by-finite and has no
129
non-trivial finite normal subgroup. Such groups can be constructed using the
130
ACLIB package.)
131
</Item>
132
</Row>
133
134
<Row>
135
<Item>
136
<Index>ResolutionAlmostCrystalQuotient</Index>
137
<C>ResolutionAlmostCrystalQuotient(G,n,c)</C>
138
<C>ResolutionAlmostCrystalQuotient(G,n,c,false)</C>
139
<P/>
140
141
An almost crystallographic group <M>G</M> is an extension of a finite group
142
<M>P</M> by a nilpotent group <M>T</M>, and has no non-trivial finite
143
normal subgroup. We define the relative lower central series by setting
144
<M>T_1=T</M> and <M>T_{i+1}=[T_i,G]</M>.<P/>
145
146
This function inputs an almost crystallographic group <M>G</M> together
147
with positive integers <M>n</M> and <M>c</M>. It returns <M>n</M> terms of
148
a free <M>ZQ</M>-resolution <M>R</M> for the group <M>Q=G/T_c</M> .<P/>
149
150
In addition to the usual components, the resolution <M>R</M> has the
151
component <M>R.quotientHomomorphism</M> which gives the quotient
152
homomorphism <M>G \longrightarrow Q </M>.<P/>
153
154
If a fourth optional variable is set equal to "false" then the function
155
omits to test whether <M>Q</M> is finite and a "more canonical"
156
resolution is constructed.
157
</Item>
158
</Row>
159
160
<Row>
161
<Item>
162
<Index>ResolutionArtinGroup</Index>
163
<C>ResolutionArtinGroup(D,n)</C>
164
<P/>
165
Inputs a Coxeter diagram <M>D</M> and an integer <M>n>1</M>. It returns
166
<M>n</M> terms of a free <M>ZG</M>-resolution <M>R</M> where <M>G</M> is
167
the Artin monoid associated to <M>D</M>. It is conjectured that
168
<M>R</M> is also a free resolution for the Artin group <M>G</M>.
169
The conjecture is known to hold in
170
<URL Text="certain cases">../www/SideLinks/About/aboutArtinGroups.html</URL>.<P/>
171
172
<M>G=R.group</M> is infinite and returned as a finitely presented group.
173
The list <M>R.elts</M> is a partial listing of the elements of <M>G</M>
174
which grows as <M>R</M> is used. Initially <M>R.elts</M> is empty and then,
175
any time the boundary of a resolution generator is called, <M>R.elts</M>
176
is updated to include elements of <M>G</M> involved in the boundary.<P/>
177
178
The contracting homotopy on <M>R</M> has not yet been implemented!
179
Furthermore, the group <M>G</M> is currently returned only as a finitely
180
presented group (without any method for solving the word problem).
181
</Item>
182
</Row>
183
184
<Row>
185
<Item>
186
<Index> ResolutionAsphericalPresentation</Index>
187
<C>ResolutionAsphericalPresentation(F,R,n)</C>
188
<P/>
189
Inputs a free group <M>F</M>, a set <M>R</M> of words in <M>F</M>
190
which constitute an aspherical presentation for a group <M>G</M>, and a
191
positive integer <M>n</M>. (Asphericity can be a difficult property to
192
verify. The function <M>IsAspherical(F,R)</M> could be of help.)<P/>
193
194
The function returns n terms of a free <M>ZG</M>-resolution <M>R</M>
195
which has generators in dimensions &tlt; 3 only.
196
No contracting homotopy on
197
<M>R</M> will be returned.
198
</Item>
199
</Row>
200
201
<Row>
202
<Item>
203
<Index>ResolutionBieberbachGroup (HAPcryst)</Index>
204
<C>ResolutionBieberbachGroup( G ) </C>
205
<C>ResolutionBieberbachGroup( G, v ) </C>
206
<P/>
207
Inputs a torsion free crystallographic group <M>G</M>, also known as a Bieberbach group, represented using
208
AffineCrystGroupOnRight as
209
in the GAP package Cryst. It also optionally inputs a choice of
210
vector <M>v</M> in the euclidean space <M>R^n</M>
211
on which <M>G</M> acts freely. The function returns <M>n+1</M> terms of
212
the free <M>ZG</M>-resolution of <M>Z</M> arising as the
213
cellular chain complex of the tesselation of <M>R^n</M>
214
by the Dirichlet-Voronoi fundamental domain determined by <M>v</M>.
215
216
<P/>
217
This function is part of the
218
HAPcryst package written by <B>Marc Roeder</B> and thus requires the HAPcryst package to be loaded.
219
220
221
<P/>
222
The function requires the use of Polymake software.
223
</Item>
224
</Row>
225
226
<Row>
227
<Item>
228
<Index>ResolutionCoxeterGroup</Index>
229
<C>ResolutionCoxeterGroup(D,n)</C>
230
<P/>
231
Inputs a Coxeter diagram <M>D</M> and an integer <M>n>1</M>. It returns
232
<M>k</M> terms of a free <M>ZG</M>-resolution <M>R</M> where <M>G</M> is
233
the Coxeter group associated to <M>D</M>. Here <M>k</M>
234
is the maximum of n and the number of vertices in the Coxeter diagram.
235
At present the implementation is only for finite Coxeter groups and the group <M>G</M> is returned as a permutation group.
236
237
The contracting homotopy on <M>R</M> has not yet been implemented!
238
</Item>
239
</Row>
240
241
<Row>
242
<Item>
243
<Index>ResolutionDirectProduct </Index>
244
<C>ResolutionDirectProduct(R,S) </C>
245
<C>ResolutionDirectProduct(R,S,"internal")</C>
246
<P/>
247
248
Inputs a <M>ZG</M>-resolution <M>R</M> and <M>ZH</M>-resolution <M>S</M>.
249
It outputs a <M>ZD</M>-resolution for the direct product <M>D=G x H</M>.<P/>
250
251
If <M>G</M> and <M>H</M> lie in a common group <M>K</M>, and if they
252
commute and have trivial intersection, then an optional third variable
253
"internal" can be used. This will force <M>D</M> to be the subgroup
254
<M>GH</M> in <M>K</M>.
255
</Item>
256
</Row>
257
258
<Row>
259
<Item>
260
<Index>ResolutionExtension </Index>
261
<C>ResolutionExtension(g,R,S) </C>
262
<C>ResolutionExtension(g,R, S,"TestFiniteness")</C>
263
<C>ResolutionExtension(g,R,S,"NoTest",GmapE)</C>
264
<P/>
265
Inputs a surjective group homomorphism <M>g:E \longrightarrow G</M>
266
with kernel <M>N</M>. It also inputs a <M>ZN</M>-resolution <M>R</M>
267
and a <M>ZG</M>-resolution <M>S</M>. It returns a <M>ZE</M>-resolution.
268
The groups <M>E</M> and <M>G</M> can be infinite.<P/>
269
270
If an optional fourth argument is set equal to "TestFiniteness" then the
271
groups <M>N</M> and <M>G</M> will be tested to see if they are finite. If
272
they are finite then some speed saving routines will be invoked.<P/>
273
274
If the homomorphism <M>g</M> is such that the GAP function
275
<M>PreImagesElement(g,x)</M> doesn't work, then a function <M>GmapE()</M>
276
should be included as a fifth input. For any <M>x</M> in <M>G</M> this
277
function should return an element <M>GmapE(x)</M> in <M>E</M> which
278
gets mapped onto <M>x</M> by <M>g</M>.<P/>
279
280
The contracting homotopy on the <M>ZE</M>-resolution has not yet been
281
fully implemented for infinite groups!
282
</Item>
283
</Row>
284
285
286
<Row>
287
<Item>
288
<Index>ResolutionFiniteDirectProduct</Index>
289
<C>ResolutionFiniteDirectProduct(R,S) </C>
290
<C>ResolutionFiniteDirectProduct(R,S, "internal")</C>
291
<P/>
292
293
Inputs a <M>ZG</M>-resolution <M>R</M> and <M>ZH</M>-resolution
294
<M>S</M> where <M>G</M> and <M>H</M> are finite groups. It outputs a
295
<M>ZD</M>-resolution for the direct product <M>D=G�H</M>.<P/>
296
297
If <M>G</M> and <M>H</M> lie in a common group <M>K</M>, and if they
298
commute and have trivial intersection, then an optional third variable
299
"internal" can be used. This will force <M>D</M> to be the subgroup
300
<M>GH</M> in <M>K</M>.
301
</Item>
302
</Row>
303
304
305
<Row>
306
<Item>
307
<Index>ResolutionFiniteExtension</Index>
308
<C>ResolutionFiniteExtension(gensE,gensG,R,n)</C>
309
<C>ResolutionFiniteExtension(gensE,gensG,R,n,true) </C>
310
<C>ResolutionFiniteExtension(gensE,gensG,R,n,false,S) </C>
311
<P/>
312
313
Inputs: a set <M>gensE</M> of generators for a finite group
314
<M>E</M>; a set <M>gensG</M> equal to the image of <M>gensE</M> in
315
a quotient group <M>G</M> of <M>E</M>; a <M>ZG</M>-resolution
316
<M>R</M> up to dimension at least <M>n</M>; a positive integer <M>n</M>.
317
It uses the <M>TwistedTensorProduct()</M> construction to return
318
<M>n</M> terms of a <M>ZE</M>-resolution.<P/>
319
320
The function has an optional fourth argument which, when set equal to "true",
321
invokes tietze reductions in the construction of a resolution for the kernel of <M>E \longrightarrow G</M>.<P/>
322
323
If a <M>ZN</M>-resolution <M>S</M> is available, where <M>N</M> is the
324
kernel of the quotient <M>E \longrightarrow G</M>, then this can be incorporated into the computations using an optional fifth argument.
325
</Item>
326
</Row>
327
328
<Row>
329
<Item>
330
<Index>ResolutionFiniteGroup</Index>
331
<C>ResolutionFiniteGroup(gens,n)</C>
332
<C>ResolutionFiniteGroup(gens,n,true)</C>
333
<C>ResolutionFiniteGroup(gens,n,false,p) </C>
334
<C>ResolutionFiniteGroup(gens,n,false,0,"extendible") </C>
335
<P/>
336
337
Inputs a set <M>gens</M> of generators for a finite group <M>G</M> and
338
a positive integer <M>n</M>. It outputs <M>n</M> terms of a
339
<M>ZG</M>-resolution.<P/>
340
341
The function has an optional third argument which, when set equal to
342
<M>true</M>, invokes tietze reductions in the construction of the
343
resolution. <P/>
344
345
The function has an optional fourth
346
argument which, when set equal to a prime <M>p</M>, records the
347
fact that the resolution will only be used for mod <M>p</M>
348
calculations. This could speed up subsequent constructions.
349
<P/>
350
351
The function has an optional fifth
352
argument which, when set equal to "extendible", returns a resolution whose length can be increased using the command R!.extend() .
353
354
</Item></Row>
355
356
357
358
<Row>
359
<Item>
360
<Index> ResolutionFiniteSubgroup</Index>
361
<C>ResolutionFiniteSubgroup(R,K)</C>
362
<C>ResolutionFiniteSubgroup(R,gensG,gensK)</C>
363
<P/>
364
365
Inputs a <M>ZG</M>-resolution for a finite group <M>G</M> and a subgroup
366
<M>K</M> of index <M>|G:K|</M>. It returns a free
367
<M>ZK</M>-resolution whose <M>ZK</M>-rank is <M>|G:K|</M>
368
times the <M>ZG</M>-rank
369
in each dimension.<P/>
370
371
Generating sets <M>gensG</M>, <M>gensK</M> for <M>G</M> and <M>K</M>
372
can also be input to the function (though the method does not depend on
373
a choice of generators).<P/>
374
375
This <M>ZK</M>-resolution is not reduced. ie. it has more than one
376
generator in dimension <M>0</M>.
377
</Item>
378
</Row>
379
380
<Row>
381
<Item>
382
<Index>ResolutionGraphOfGroups </Index>
383
<C>ResolutionGraphOfGroups(D,n) </C>
384
<C>ResolutionGraphOfGroups(D,n,L) </C>
385
<P/>
386
387
Inputs a graph of groups <M>D</M> and a positive integer <M>n</M>.
388
It returns <M>n</M> terms of a free <M>ZG</M>-resolution for
389
the fundamental group <M>G</M> of <M>D</M>.<P/>
390
391
An optional third argument <M>L=[R_1 , \ldots , R_t]</M>
392
can be used to list (in any order) free resolutions for some/all of
393
the vertex and edge groups in <M>D</M>.
394
If for some vertex or edge group no resolution is listed in <M>L</M>
395
then the function <M>ResolutionFiniteGroup()</M> will be used to try
396
to construct the resolution. <P/>
397
398
The <M>ZG</M>-resolution is usually not reduced.
399
i.e. it has more than one generator in dimension 0.<P/>
400
401
402
The contracting homotopy on the <M>ZG</M>-resolution has
403
not yet been implemented! Furthermore, the group <M>G</M>
404
is currently returned only as a finitely presented group
405
(without any method for solving the word problem).
406
</Item>
407
</Row>
408
409
410
<Row>
411
<Item>
412
<Index>ResolutionNilpotentGroup </Index>
413
<C>ResolutionNilpotentGroup(G,n) </C>
414
<C>ResolutionNilpotentGroup(G,n,"TestFiniteness")</C>
415
<P/>
416
417
Inputs a nilpotent group <M>G</M> and positive integer <M>n</M>.
418
It returns <M>n</M> terms of a free <M>ZG</M>-resolution.
419
The resolution is computed using a divide-and-conquer
420
technique involving the lower central series.<P/>
421
422
This function can be applied to infinite groups <M>G</M>.
423
For finite groups the function <M>ResolutionNormalSeries()</M>
424
probably gives better results.<P/>
425
426
If an optional third argument is set equal to
427
"TestFiniteness" then the groups <M>N</M> and <M>G</M>
428
will be tested to see if they are finite. If they are finite then
429
some speed saving routines will be invoked.<P/>
430
431
The contracting homotopy on the <M>ZE</M>-resolution has not
432
yet been fully implemented for infinite groups.
433
</Item>
434
</Row>
435
436
<Row>
437
<Item>
438
<Index> ResolutionNormalSeries </Index>
439
<C>ResolutionNormalSeries(L,n) </C>
440
<C>ResolutionNormalSeries(L,n,true)</C>
441
<C>ResolutionNormalSeries(L,n,false,p)</C>
442
<P/>
443
444
Inputs a positive integer <M>n</M> and a list
445
<M>L = [L_1 , ..., L_k]</M> of normal subgroups <M>L_i</M>
446
of a finite group <M>G</M> satisfying <M>G = L_1</M> &tgt; <M>L2</M>
447
&tgt;<M> \ldots </M>
448
&tgt;<M> L_k</M>. Alternatively, <M>L = [gensL_1, ... gensL_k]</M>
449
can be a list of generating sets for the <M>L_i</M>
450
(and these particular generators will be used in the
451
construction of resolutions). It returns a <M>ZG</M>-resolution
452
by repeatedly using the function <M>ResolutionFiniteExtension()</M>.<P/>
453
454
The function has an optional third argument which, if set equal to true,
455
invokes tietze reductions in the construction of resolutions.<P/>
456
457
The function has an optional fourth argument which,
458
if set equal to p &tgt; 0,
459
produces a resolution which is only valid for mod <M>p</M> calculations.
460
</Item>
461
</Row>
462
463
<Row>
464
<Item>
465
<Index>ResolutionPrimePowerGroup </Index>
466
<C>ResolutionPrimePowerGroup(P,n) </C>
467
<C>ResolutionPrimePowerGroup(G,n,p)</C>
468
<P/>
469
470
Inputs a <M>p</M>-group <M>P</M> and integer <M>n</M>&tgt;<M>0</M>.
471
It uses GAP's standard linear algebra functions over the field <M>F</M>
472
of p elements
473
to construct a free <M>FP</M>-resolution for mod <M>p</M>
474
calculations only. The resolution is minimal -
475
meaning that the number of generators of <M>R_n</M>
476
equals the rank of <M>H_n(P,F)</M>.
477
<P/>
478
479
The function can also be used to obtain a free non-minimal <M>FG</M>-resolution
480
of a small group <M>G</M> of non-prime-power order. In this case the prime <M>p</M> must be entered as
481
the third input variable. (In the non-prime-power case the algorithm is naive and not very good.)
482
</Item>
483
</Row>
484
485
<Row>
486
<Item>
487
<Index>ResolutionSmallFpGroup </Index>
488
<C>ResolutionSmallFpGroup(G,n) </C>
489
<C>ResolutionSmallFpGroup(G,n,p) </C>
490
<P/>
491
492
Inputs a small finitely presented group <M>G</M> and an integer
493
<M>n</M>&tgt;<M>0</M>. It returns <M>n</M> terms of a <M>ZG</M>-resolution
494
which, in dimensions 1 and 2, corresponds to the
495
given presentation for <M>G</M>.
496
The method returns no contracting homotopy for the resolution.<P/>
497
498
The function has an optional fourth argument which,
499
when set equal to a prime <M>p</M>,
500
records the fact that the resolution will only be used for mod <M>p</M>
501
calculations. This could speed up subsequent constructions.
502
<P/>
503
504
This function was written by Irina Kholodna.
505
</Item>
506
</Row>
507
508
<Row>
509
<Item>
510
<Index>ResolutionSubgroup</Index>
511
<C>ResolutionSubgroup(R,K)</C>
512
<P/>
513
514
Inputs a <M>ZG</M>-resolution for an (infinite) group <M>G</M> and a
515
subgroup <M>K</M> of finite index <M>|G:K|</M>. It returns a free
516
<M>ZK</M>-resolution whose <M>ZK</M>-rank is <M>|G:K|</M> times
517
the <M>ZG</M>-rank in each dimension.<P/>
518
519
If <M>G</M> is finite then the function
520
<M>ResolutionFiniteSubgroup(R,G,K)</M> will probably work better.
521
In particular, resolutions from this function
522
probably won't work with the function <M>EquivariantChainMap()</M>.
523
524
This <M>ZK</M>-resolution is not reduced. i.e.
525
it has more than one generator in dimension 0.
526
</Item>
527
</Row>
528
529
530
<Row>
531
<Item>
532
<Index>ResolutionSubnormalSeries </Index>
533
<C>ResolutionSubnormalSeries(L,n) </C>
534
<P/>
535
536
Inputs a positive integer n and a list <M>L = [L_1 , \ldots , L_k]</M>
537
of subgroups <M>L_i</M> of a finite group <M>G=L_1</M> such that
538
<M>L_1</M> &tgt; <M>L2 \ldots </M> &tgt; <M>L_k</M> is a subnormal series in
539
<M>G</M> (meaning that each <M>L_{i+1}</M> must be normal in <M>L_i</M>).
540
It returns a <M>ZG</M>-resolution by repeatedly using the function
541
<M>ResolutionFiniteExtension()</M>.<P/>
542
543
If <M>L</M> is a series of normal subgroups in <M>G</M>
544
then the function <M>ResolutionNormalSeries(L,n)</M>
545
will possibly work more efficiently.
546
</Item>
547
</Row>
548
549
<Row>
550
<Item>
551
<Index> TwistedTensorProduct</Index>
552
<C>TwistedTensorProduct(R,S,EhomG,GmapE,NhomE,NEhomN,EltsE,Mult,InvE)</C>
553
<P/>
554
555
Inputs a <M>ZG</M>-resolution <M>R</M>, a <M>ZN</M>-resolution
556
<M>S</M>, and other data relating to a short exact sequence
557
<M>1 \longrightarrow N \longrightarrow
558
E \longrightarrow
559
G \longrightarrow 1</M>.
560
It uses a perturbation technique of CTC Wall to construct a
561
<M>ZE</M>-resolution <M>F</M>. Both <M>G</M> and <M>N</M>
562
could be infinite. The "length" of <M>F</M> is equal to the
563
minimum of the "length"s of <M>R</M> and <M>S</M>.
564
The resolution <M>R</M> needs no contracting homotopy if no such homotopy
565
is requied for <M>F</M>.
566
</Item>
567
</Row>
568
569
<Row>
570
<Item>
571
<Index> ConjugatedResolution</Index>
572
<C>ConjugatedResolution(R,x)</C>
573
<P/>
574
575
Inputs a ZG-resoluton <M>R</M> and an element <M>x</M> from some group containing <M>G</M>. It returns a <M>ZG^x</M>-resolution <M>S</M> where the group <M>G^x</M>
576
is the conjugate of <M>G</M> by <M>x</M>. (The component <M>S!.elts</M> will be a pseudolist rather than a list.)
577
</Item>
578
</Row>
579
580
581
<Row>
582
<Item>
583
<Index> RecalculateIncidenceNumbers</Index>
584
<C>RecalculateIncidenceNumbers(R)</C>
585
<P/>
586
587
Inputs a ZG-resoluton <M>R</M> which arises as the cellular chain complex of a regular CW-complex. (Thus the boundary of any cell is a list of distinct cells.) It recalculates the incidence numbers for <M>R</M>. If it is applied to a resolution that is not regular then a wrong answer may be returned.
588
</Item>
589
</Row>
590
591
</Table>
592
</Chapter>
593
594
595