CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutSign UpSign In

Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.

| Download

GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it

Views: 418346
1
<Chapter><Heading> Simplicial Complexes</Heading>
2
3
<Table Align="|l|" >
4
5
6
<Row>
7
<Item>
8
<C>Homology(T,n)</C>
9
<C>Homology(T)</C>
10
11
<P/>
12
Inputs a pure cubical complex, or cubical complex, or simplicial complex <M>T</M>
13
and a non-negative integer <M>n</M>. It returns the n-th integral homology of <M>T</M> as a list of torsion integers.
14
If no value of <M>n</M> is input then the list of all homologies of <M>T</M>
15
in dimensions 0 to Dimension(T) is returned .
16
</Item>
17
</Row>
18
19
<Row>
20
<Item>
21
<C>RipsHomology(G,n)</C>
22
<C>RipsHomology(G,n,p)</C>
23
24
<P/>
25
Inputs a graph <M>G</M>, a non-negative integer <M>n</M> (and optionally a prime number <M>p</M>). It returns the integral homology (or mod p homology) in degree <M>n</M> of the Rips complex of <M>G</M>.
26
</Item>
27
</Row>
28
29
30
<Row>
31
<Item>
32
<Index>Bettinumbers</Index>
33
<C> Bettinumbers(T,n)</C>
34
<C> Bettinumbers(T)</C>
35
36
<P/>
37
Inputs a pure cubical complex, or cubical complex, simplicial complex or chain complex <M>T</M> and a non-negative integer <M>n</M>.
38
The rank of the n-th rational homology group <M>H_n(T,\mathbb Q)</M> is returned. If no value for n is input then the list of Betti numbers
39
in dimensions 0 to Dimension(T) is returned .
40
</Item>
41
</Row>
42
43
44
<Row>
45
<Item>
46
47
<C>ChainComplex(T)</C>
48
49
<P/>
50
Inputs a pure cubical complex, or cubical complex, or simplicial complex
51
<M>T</M>
52
and returns the (often very large) cellular chain complex of <M>T</M>.
53
</Item>
54
</Row>
55
56
<Row>
57
<Item>
58
<Index>CechComplexOfPureCubicalComplex</Index>
59
<C>CechComplexOfPureCubicalComplex(T)</C>
60
61
<P/>
62
Inputs a d-dimensional pure cubical complex
63
<M>T</M>
64
and returns a simplicial complex <M>S</M>. The simplicial complex <M>S</M> has one vertex for each d-cube in <M>T</M>, and an n-simplex for each collection of n+1 d-cubes with non-trivial common intersection.
65
The homotopy types of <M>T</M> and <M>S</M> are equal.
66
</Item>
67
</Row>
68
69
<Row>
70
<Item>
71
<Index>PureComplexToSimplicialComplex</Index>
72
<C>PureComplexToSimplicialComplex(T,k)</C>
73
74
<P/>
75
Inputs either a d-dimensional pure cubical complex
76
<M>T</M> or a d-dimensional pure permutahedral complex <M>T</M> together with
77
a non-negative integer <M>k</M>. It
78
returns the first <M>k</M> dimensions of
79
a simplicial complex <M>S</M>. The simplicial complex <M>S</M> has one vertex for each d-cell in <M>T</M>, and an n-simplex for each collection of n+1 d-cells with non-trivial common intersection.
80
The homotopy types of <M>T</M> and <M>S</M> are equal.
81
82
83
<P/> For a pure cubical complex <M>T</M> this uses a slightly different algorithm to the function CechComplexOfPureCubicalComplex(T) but constructs the same simplicial complex.
84
</Item>
85
</Row>
86
87
88
89
<Row>
90
<Item>
91
<Index>RipsChainComplex</Index>
92
<C>RipsChainComplex(G,n)</C>
93
<P/>
94
Inputs a graph <M>G</M> and a non-negative integer <M>n</M>. It returns
95
<M>n+1</M> terms of a chain complex whose homology is that of the nerve (or Rips complex) of
96
the graph in degrees up to <M>n</M>.
97
</Item>
98
</Row>
99
100
<Row>
101
<Item>
102
<Index>VectorsToSymmetricMatrix</Index>
103
<C>VectorsToSymmetricMatrix(M)</C>
104
<C>VectorsToSymmetricMatrix(M,distance)</C>
105
106
<P/>
107
Inputs a matrix <M>M</M> of rational numbers and returns a symmetric matrix <M>S</M> whose <M>(i,j)</M> entry is the distance between the <M>i</M>-th row and <M>j</M>-th rows of <M>M</M> where distance is given by the sum of the absolute values of the coordinate differences.
108
109
<P/>
110
Optionally, a function distance(v,w) can be entered as a second argument. This function has to return a rational number for each pair of rational
111
vectors <M>v,w</M> of length Length(M[1]).
112
</Item>
113
</Row>
114
115
116
<Row>
117
<Item>
118
<Index>EulerCharacteristic</Index>
119
<C>EulerCharacteristic(T)</C>
120
121
<P/>
122
Inputs a pure cubical complex, or cubical complex, or simplicial complex
123
<M>T</M>
124
and returns its Euler characteristic.
125
</Item>
126
</Row>
127
128
<Row>
129
<Item>
130
<Index>MaximalSimplicesToSimplicialComplex</Index>
131
<C>MaximalSimplicesToSimplicialComplex(L)</C>
132
133
<P/>
134
Inputs a list L whose entries are lists of vertices representing the maximal simplices of a simplicial complex.
135
The simplicial complex is returned. Here a "vertex" is a GAP object such as an integer or a subgroup.
136
</Item>
137
</Row>
138
139
<Row>
140
<Item>
141
<Index>SkeletonOfSimplicialComplex</Index>
142
<C>SkeletonOfSimplicialComplex(S,k)</C>
143
144
<P/>
145
Inputs a simplicial complex <M>S</M> and a positive integer <M>k</M> less than or equal to the dimension of <M>S</M>. It returns the truncated <M>k</M>-dimensional simplicial complex <M>S^k</M> (and leaves <M>S</M> unchanged).
146
</Item>
147
</Row>
148
149
<Row>
150
<Item>
151
<Index>GraphOfSimplicialComplex</Index>
152
<C>GraphOfSimplicialComplex(S)</C>
153
154
<P/>
155
Inputs a simplicial complex <M>S</M> and returns the graph
156
of <M>S</M>.
157
</Item>
158
</Row>
159
160
<Row>
161
<Item>
162
<Index>ContractibleSubcomplexOfSimplicialComplex</Index>
163
<C>ContractibleSubcomplexOfSimplicialComplex(S)</C>
164
165
<P/>
166
Inputs a simplicial complex <M>S</M> and returns a (probably maximal)
167
contractible subcomplex
168
of <M>S</M>.
169
</Item>
170
</Row>
171
172
<Row>
173
<Item>
174
<Index>PathComponentsOfSimplicialComplex</Index>
175
<C>PathComponentsOfSimplicialComplex(S,n)</C>
176
177
<P/>
178
Inputs a simplicial complex <M>S</M> and a nonnegative integer <M>n</M>. If <M>n=0</M> the number of path components of <M>S</M> is returned. Otherwise the n-th path component is returned (as a simplicial complex).
179
</Item>
180
</Row>
181
182
183
184
<Row>
185
<Item>
186
<Index>QuillenComplex</Index>
187
<C>QuillenComplex(G)</C>
188
189
<P/>
190
Inputs a finite group
191
<M>G</M>
192
and returns, as a simplicial complex, the order complex of the poset of non-trivial elementary abelian subgroups of <M>G</M>.
193
</Item>
194
</Row>
195
196
<Row>
197
<Item>
198
<Index>SymmetricMatrixToIncidenceMatrix</Index>
199
<C>SymmetricMatrixToIncidenceMatrix(S,t)</C>
200
<C>SymmetricMatrixToIncidenceMatrix(S,t,d)</C>
201
202
<P/>
203
Inputs a symmetric integer matrix S and an integer t. It
204
returns the matrix <M>M</M> with <M>M_{ij}=1</M> if <M>I_{ij}</M> is less than <M> t</M>
205
and <M>I_{ij}=1</M> otherwise.
206
207
<P/>
208
An optional integer <M>d</M> can be given as a third argument. In this case
209
the incidence matrix should have roughly at most <M>d</M> entries in each row (corresponding to the $d$ smallest entries in each row of <M>S</M>).
210
</Item>
211
</Row>
212
213
<Row>
214
<Item>
215
<Index>IncidenceMatrixToGraph</Index>
216
<C>IncidenceMatrixToGraph(M)</C>
217
218
<P/>
219
Inputs a symmetric 0/1 matrix M. It
220
returns the
221
graph with one vertex for each row of <M>M</M> and an edges between vertices <M>i</M> and <M>j</M> if the <M>(i,j)</M> entry in <M>M</M> equals 1.
222
</Item>
223
</Row>
224
225
<Row>
226
<Item>
227
<Index>CayleyGraphOfGroup</Index>
228
<C>CayleyGraphOfGroup(G,A)</C>
229
230
<P/>
231
Inputs a group <M>G</M> and a set <M>A</M> of generators. It returns the Cayley graph.
232
</Item>
233
</Row>
234
235
236
<Row>
237
<Item>
238
<Index>PathComponentsOfGraph</Index>
239
<C>PathComponentsOfGraph(G,n)</C>
240
241
<P/>
242
Inputs a graph <M>G</M> and a nonnegative integer <M>n</M>. If <M>n=0</M> the number of path components is returned. Otherwise the n-th path component is returned (as a graph).
243
</Item>
244
</Row>
245
246
<Row>
247
<Item>
248
<Index>ContractGraph</Index>
249
<C>ContractGraph(G)</C>
250
251
<P/>
252
Inputs a graph <M>G</M> and tries to remove vertices and edges to produce a smaller graph <M>G'</M>
253
such that the indlusion <M>G' \rightarrow G</M> induces a homotopy equivalence
254
<M>RG \rightarrow RG'</M> of Rips complexes. If the graph <M>G</M> is modified the function returns true, and otherwise returns false.
255
</Item>
256
</Row>
257
258
259
<Row>
260
<Item>
261
<Index>GraphDisplay</Index>
262
<C>GraphDisplay(G)</C>
263
264
<P/>
265
This function uses GraphViz software to display a graph <M>G</M>.
266
</Item>
267
</Row>
268
269
<Row>
270
<Item>
271
<Index>SimplicialMap</Index>
272
<Index>SimplicialMapNC</Index>
273
<C>SimplicialMap(K,L,f)</C>
274
<C>SimplicialMapNC(K,L,f)</C>
275
276
<P/>
277
Inputs simplicial complexes <M>K</M> , <M>L</M> and a
278
function <M>f\colon K!.vertices \rightarrow L!.vertices</M>
279
representing a simplicial map. It returns a simplicial
280
map <M>K \rightarrow L</M>. If <M>f</M> does not happen to represent a
281
simplicial map then SimplicialMap(K,L,f) will return fail; SimplicialMapNC(K,L,f)
282
will not do any check and always return something of the data type "simplicial map".
283
</Item>
284
</Row>
285
286
<Row>
287
<Item>
288
<Index>ChainMapOfSimplicialMap</Index>
289
<C>ChainMapOfSimplicialMap(f)</C>
290
291
<P/>
292
Inputs a simplicial map <M>f\colon K \rightarrow L</M> and returns the
293
corresponding chain map <M>C_\ast(f) \colon C_\ast(K) \rightarrow C_\ast(L)</M> of the simplicial chain complexes..
294
</Item>
295
</Row>
296
297
298
299
<Row>
300
<Item>
301
<Index>SimplicialNerveOfGraph</Index>
302
<C>SimplicialNerveOfGraph(G,d)</C>
303
304
<P/>
305
Inputs a graph <M>G</M> and returns a <M>d</M>-dimensional
306
simplicial complex <M>K</M> whose 1-skeleton is equal to <M>G</M>. There is a simplicial inclusion <M>K \rightarrow RG</M> where: (i) the inclusion induces isomorphisms on homotopy groups in dimensions less than <M>d</M>; (ii) the complex <M>RG</M> is the Rips complex (with one <M>n</M>-simplex for each complete subgraph of <M>G</M> on <M>n+1</M> vertices).
307
</Item>
308
</Row>
309
310
311
312
313
</Table>
314
</Chapter>
315
316
317
318