Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
Project: cocalc-sagemath-dev-slelievre
Views: 418346########################################################################## #0 #F CrystGcomplex ## Input: A set F of crystallographic matrices, a G-full basis B and ## check=1 (check is for future use of implementation of Bredon ## homology) ## ## Output: G-equivalent CW-space for group G generated by F. ## ## InstallGlobalFunction(CrystGcomplex, function(gens,basis,check) local i,x,k,combin,n,j,r,m,vect,c, B,G,T,S,Bt,Action,Sign,FinalBoundary,BoundaryList, L,kcells,cells,w,StabGrp,ActionRecord,lnth,PseudoRotSubGroup, RotSubGroupList, Dimension,SearchOrbit,pos,StabilizerOfPoint,PseudoBoundary, RotSubGroup, Elts,Boundary,Stabilizer,DVF,DVFRec,Homotopy,rmult,FinalHomotopy; B:=basis[1]; c:=basis[2]; vect:=c-Sum(B)/2; vect:=0*vect; G:=AffineCrystGroup(gens); T:=TranslationSubGroup(G); Bt:=T!.TranslationBasis; S:=RightTransversal(G,T); n:=DimensionOfMatrixGroup(G)-1; Elts:=[One(G)]; Append(Elts,gens); lnth:=1000; if check=1 then # B is the G-full basis L:=[]; for k in [0..n] do L[k+1]:=[]; ### list all centers of k-cells kcells:=[]; combin:=Combinations([1..n],k); for x in combin do w:=[]; for i in [1..n] do if i in x then Add(w,[1/2]); else Add(w,[0,1]); fi; od; cells:=Cartesian(w); Append(kcells,cells*B+vect); od; ### search for k-orbits Add(L[k+1],kcells[1]); for i in [2..Length(kcells)] do r:=0; for j in [1..Length(L[k+1])] do if IsList(IsCrystSameOrbit(G,Bt,S, kcells[i],L[k+1][j])) then break; fi; r:=r+1; od; if r=Length(L[k+1]) then Add(L[k+1],kcells[i]);fi; od; od; # Cubical subdividing the fundamental region: # slice the fundamental cell into 2^n parts to get a # proper action of G on R^n elif check=0 then Apply(B,x->x/2); L:=[]; for k in [0..n] do L[k+1]:=[]; ### list all centers of k-cells kcells:=[]; combin:=Combinations([1..n],k); for x in combin do w:=[]; for i in [1..n] do if i in x then Add(w,[1/2,3/2]); else Add(w,[0,1,2]); fi; od; cells:=Cartesian(w); Append(kcells,cells*B+vect); od; ### search for k-orbits Add(L[k+1],kcells[1]); for i in [2..Length(kcells)] do r:=0; for j in [1..Length(L[k+1])] do if IsList(IsCrystSameOrbit(G,Bt,S, kcells[i],L[k+1][j])) then break; fi; r:=r+1; od; if r=Length(L[k+1]) then Add(L[k+1],kcells[i]);fi; od; od; else Print("check is either 1 for B is G-full basis and 0 for proper action", "\n"); return fail; fi; ################################################################### #1 #F Dimension ## ## Input: An integer k ## Output: ZG-rank of C_k(X) ## Dimension:=function(k) if k>n then return 0; fi; return Length(L[k+1]); end; ################################################################### ################################################################### #1 #F pos ## ## Input: A matrix g ## Output: If g in Elts then return the position of g, otherwise ## add g to Elts and return the position. ## pos:=function(g) local p; p:=Position(Elts,g); if p=fail then Add(Elts,g); return Length(Elts); else return p; fi; end; ################################################################### ################################################################### #1 #F SearchOrbit ## ## Input: A matrix g ## Output: If g in Elts then return the position of g, otherwise ## add g to Elts and return the position. ## SearchOrbit:=function(g,k) local i,p,h; for i in [1..Length(L[k+1])] do p:=IsCrystSameOrbit(G,Bt,S,L[k+1][i],g); if IsList(p) then h:=pos(p); return [i,h]; fi; od; end; ################################################################### # Create a record for the Action ActionRecord:=[]; for m in [1..lnth+1] do ActionRecord[m]:=[]; for k in [1..Dimension(m-1)] do ActionRecord[m][k]:=[]; od; od; ################################################################### #1 #F rmult ## ## Input: A list L, degree k, position g of an element ## Output: Product of g and L by the action on right. ## rmult:=function(L,k,g) local x,w,t,h,y,vv; vv:=[]; for x in [1..Length(L)] do w:=Elts[L[x][2]]*Elts[g]; L[x][1]:=Sign(k,L[x][1],pos(w))*L[x][1]; w:=CanonicalRightCosetElement(StabGrp[k+1] [AbsInt(L[x][1])],w); t:=pos(w); Add(vv,[Sign(k,L[x][1],t)*L[x][1],t]); od; return vv; end; ################################################################### ################################################################### #1 #F Action ## ## Input: Degree m, position k of a generator and position g of ## an element. ## Output: 1 or -1. ## Action:=function(m,k,g) local id,r,u,H,abk,ans,x,h,l,i; abk:=AbsInt(k); if not IsBound(ActionRecord[m+1][abk][g]) then H:=StabGrp[m+1][abk]; if Order(H)=infinity then # We are assuming that any infinite stabilizer # group acts trivially. ActionRecord[m+1][abk][g]:=1; else id:=CanonicalRightCosetElement(H,Identity(H)); r:=CanonicalRightCosetElement(H,Elts[g]^-1); r:=id^-1*r; u:=r*Elts[g]; if u in RotSubGroupList[m+1][abk] then ans:= 1; else ans:= -1; fi; ActionRecord[m+1][abk][g]:=ans; fi; fi; return ActionRecord[m+1][abk][g]; end; ################################################################### ################################################################### #1 #F Action ## ## Input: Degree m, position k of a generator and position g of ## an element. ## Output: 1 or -1. ## PseudoBoundary:=function(k,s) local f,x,bdry,i,Fnt,Bck,j,ss; ss:=AbsInt(s); f:=L[k+1][ss]; if k=0 then return [];fi; #x:=f*B^-1; x:=(f-vect)*B^-1; bdry:=[]; j:=0; for i in [1..n] do Fnt:=StructuralCopy(x); Bck:=StructuralCopy(x); if not IsInt(x[i]) then j:=j+1; Fnt[i]:=Fnt[i]-1/2; Bck[i]:=Bck[i]+1/2; #Fnt:=Fnt*B; #Bck:=Bck*B; Fnt:=Fnt*B+vect; Bck:=Bck*B+vect; Append(bdry,[SearchOrbit(Fnt,k-1),SearchOrbit(Bck,k-1)]); #Append(bdry,[SearchOrbit(Fnt,k-1),SearchOrbit(Bck,k-1)]); fi; od; return bdry; end; ################################################################### ################################################################### #1 #F Sign ## ## Input: Degree m, position k of a generator and position g of ## an element. ## Output: 1 or -1. ## Sign:=function(m,k,g) local x,h,p,r,c,i,y,f,s,kk,e,B1,B2,w; kk:=AbsInt(k); if m=0 then return 1;fi; h:=Elts[g]; p:=CrystFinitePartOfMatrix(h); e:=L[m+1][kk]; #x:=e*B^-1; x:=e*B^-1; r:=[]; for i in [1..Length(x)] do if not IsInt(x[i]) then Add(r,i); fi; od; B1:=B{r}; B1:=B1*p; e:=Flat(e); Add(e,1); f:=e*h; Remove(f); y:=f*B^-1; c:=[]; for i in [1..Length(y)] do if not IsInt(y[i]) then Add(c,i); fi; od; B2:=B{c}; s:=[]; for i in [1..Length(B2)] do Add(s,SolutionMat(B1,B2[i])); od; #Print(s); return SignRat(Determinant(s)); end; ################################################################### ################################################################### #1 #F Boundary ## ## Input: degree k and position s of a generator. ## ## Output: the boundary d(k,s). ## Boundary:=function(k,s) local psbdry,j,w,bdry; psbdry:=PseudoBoundary(k,s); bdry:=[]; for j in [1..Length(psbdry)] do w:=psbdry[j]; if (j mod 4 = 3) or (j mod 4 = 2) then #if IsEvenInt(j) then Add(bdry,Negate([Sign(k-1,w[1],w[2])*w[1],w[2]])); else Add(bdry,[Sign(k-1,w[1],w[2])*w[1],w[2]]); fi; od; if s<0 then return NegateWord(bdry); else return bdry; fi; end; ################################################################### # Create a list of boundary BoundaryList:=[]; for i in [1..n] do BoundaryList[i]:=[]; for j in [1..Dimension(i)] do BoundaryList[i][j]:=Boundary(i,j); od; od; ################################################################### ################################################################### #1 #F FinalBoundary ## ## Input: degree n and position k of a generator. ## ## Output: the boundary d(k,s). ## FinalBoundary:=function(n,k) if k>0 then return BoundaryList[n][k]; else return NegateWord(BoundaryList[n][AbsInt(k)]); fi; end; ################################################################### ################################################################### #1 #F StabilizerOfPoint ## ## Input: a point g in R^n. ## ## Output: The stabilizer subgroup of g. ## StabilizerOfPoint:=function(g) local H,stbgens,i,h,p; g:=Flat(g); Add(g,1); stbgens:=[]; for i in [1..Length(S)] do h:=g*S[i]-g; Remove(h); p:=h*Bt^-1; if IsIntList(p) then Add(stbgens,S[i]* VectorToCrystMatrix(h)^-1);fi; od; H:=Group(stbgens); return H; end; ################################################################### ################################################################### # Create a empty list for containing the stabilizer subgroup StabGrp:=[]; for i in [1..(n+1)] do StabGrp[i]:=[]; for j in [1..Length(L[i])] do StabGrp[i][j]:=StabilizerOfPoint(L[i][j]); od; od; ################################################################### ################################################################### #1 #F Stabilizer ## ## Input: degree m and position k of a generator (the k-th m-cell). ## ## Output: The stabilizer subgroup for the above cell. ## Stabilizer:=function(m,k) local kk; kk:=AbsInt(k); return StabGrp[m+1][k]; end; ################################################################### ################################################################### #1 #F PseudoRotSubGroup ## ## Input: degree m and position k of a generator (the k-th m-cell). ## ## Output: The rotation subgroup of the above cell. ## PseudoRotSubGroup:=function(m,k) local x,kk,l,h,i,w,r,y,H,id,eltsH,g,RotSbGrp; kk:=AbsInt(k); RotSbGrp:=[]; H:=StabGrp[m+1][k]; eltsH:=Elements(H); for g in eltsH do if Sign(m,k,pos(g))=1 then Add(RotSbGrp,g); fi; od; RotSubGroupList[m+1][kk]:=Group(RotSbGrp); return Group(RotSbGrp); end; ################################################################### ################################################################### # Create an empty list for containing the rotation subgroups RotSubGroupList:=[]; for i in [1..(n+1)] do RotSubGroupList[i]:=[]; for j in [1..Length(L[i])] do RotSubGroupList[i][j]:=PseudoRotSubGroup(i-1,j); od; od; ################################################################### ################################################################### #1 #F RotSubGroup ## ## Input: degree m and position k of a generator (the k-th m-cell). ## ## Output: The rotation subgroup of the above cell. ## RotSubGroup:=function(m,k) local kk; kk:=AbsInt(k); return RotSubGroupList[m+1][kk]; end; ################################################################### ################################################################### # Create a record for discrete vector field DVFRec:=[]; for k in [1..n+1] do DVFRec[k]:=[]; for i in [1..Length(L[k])] do DVFRec[k][i]:=[]; od; od; ################################################################### if check=1 then ################################################################### #1 #F DVF ## ## input an n-cell acts like the starting point of an arrow ## the function returns n+1-cell acts like the end ## point of the above arrow ## those cells presented by its center. ## ## Input: an n-cell. ## ## Output: n+1-cell. ## DVF:=function(k,w) local f,x,g,i,y,ww,s,b,j; ww:=[AbsInt(w[1]),w[2]]; if not IsBound(DVFRec[k+1][ww[1]][ww[2]]) then x:=StructuralCopy(L[k+1][ww[1]]); Add(x,1); x:=x*Elts[ww[2]]; Remove(x); f:=(x-vect)*B^-1; for i in [1..n] do if not f[i]=0 then if not IsInt(f[i]) then DVFRec[k+1][ww[1]][ww[2]]:=[]; return DVFRec[k+1][ww[1]][ww[2]]; else s:=SignRat(f[i]); f[i]:=f[i]-s*1/2; x:=f*B; y:=SearchOrbit(x,k+1); y[2]:=pos(CanonicalRightCosetElement (StabGrp[k+2][y[1]],Elts[y[2]])); DVFRec[k+1][ww[1]][ww[2]]:=y; return DVFRec[k+1][ww[1]][ww[2]]; fi; fi; od; DVFRec[k+1][ww[1]][ww[2]]:=[]; return DVFRec[k+1][ww[1]][ww[2]]; else return DVFRec[k+1][ww[1]][ww[2]]; fi; end; ################################################################### ################################################################### #1 #F Homotopy ## ## Input: Degree k and a word w. ## ## Output: The homotopy h(k,w). ## Homotopy:=function(k,w) local h,d,x,y,i,ww,b,p1,p2,s1,s2,v,s,p,t,a,u; if w=[] then return [];fi; a:=Sign(AbsInt(k),w[1],w[2]); d:=[]; w[2]:=pos(CanonicalRightCosetElement(StabGrp[k+1][AbsInt(w[1])], Elts[w[2]])); w[1]:=a*Sign(k,w[1],w[2])*w[1]; ww:=[AbsInt(w[1]),w[2]]; h:=StructuralCopy(DVF(k,ww)); if h=[] then return []; fi; x:=PseudoBoundary(k+1,h[1]); u:=List(x,v->[v[1],Elts[v[2]]*Elts[h[2]]]); u:=List(u,v->[v[1],pos(CanonicalRightCosetElement (StabGrp[k+1][AbsInt(v[1])],v[2]))]); p:=Position(u,ww); s:=1;; b:=StructuralCopy(FinalBoundary(k+1,h[1])); b:=rmult(b,k,h[2]); c:=StructuralCopy(b); t:=SignInt(b[p][1]); Remove(c,p); Add(d,h); for i in [1..Length(c)] do Append(d,NegateWord(Homotopy(k,c[i]))); od; if w[1]*t<0 then return NegateWord(d); else return d; fi; end; ############################################################### else DVF:=fail; Homotopy:=fail; fi; ################################################################### return Objectify(HapNonFreeResolution, rec( dimension:=Dimension, boundary:=FinalBoundary, PseudoBoundary:=PseudoBoundary, dvf:=DVF, CellList:=L, Sign:=Sign, homotopy:=Homotopy, elts:=Elts, group:=G, stabilizer:=Stabilizer, action:=Action, RotSubGroup:=RotSubGroup, properties:= [["length",100], ["characteristic",0], ["type","resolution"]] )); end); ################### end of CrystGcomplex ############################ ########################################################################## #0 #F ResolutionCubicalCrystGroup ## Input: A crystallographic group G and an positive integer n ## ## Output: The first n+1 terms of a free ZG-resolution of Z. ## ## InstallGlobalFunction(ResolutionCubicalCrystGroup, function(G,n) local gens,B,C,R,Gram, pos, Homotopy,Cnew; Gram:=GramianOfAverageScalarProductFromFiniteMatrixGroup( PointGroup(G)); if Gram=IdentityMat(DimensionOfMatrixGroup(PointGroup(G))) then gens:=GeneratorsOfGroup(G); G:=AffineCrystGroup(gens); B:=CrystGFullBasis(G); if IsList(B) then C:=CrystGcomplex(gens,B,1); Cnew:=CrystGcomplex(gens,B,1); Apply(Cnew!.elts,x->x^-1); pos:=function(L,g) local p; p:=Position(L,g); if p=fail then Add(L,g); return Length(L); else return p; fi; end; Homotopy:=function(n,w) local p,h; p:=pos(C!.elts,Cnew!.elts[w[2]]^-1); h:=StructuralCopy(C!.homotopy(n,[w[1],p])); Apply(h,x->[x[1],pos(Cnew!.elts,C!.elts[x[2]]^-1)]); return h; end; Cnew!.homotopy:=Homotopy; R:=FreeZGResolution(Cnew,n); return R; else return fail; fi; else Print("Gramian matrix is not identity \n"); return fail; fi; end); ################### end of ResolutionCubicalCrystGroup ################### ########################################################################## #0 #F TensorWithComplexRepresentationRing ## Input: ## ## Output: ## ## InstallGlobalFunction(TensorWithComplexRepresentationRing, function(C) local StabIrrTable,i,j,N, Dimension,PairToTriple,BoundaryMatrix,Boundary, TripleToPair,StabGrp,BoundaryRec,PartialBoundaryMatrix; StabGrp:=[]; i:=0; while C!.dimension(i)>0 do StabGrp[i+1]:=[]; for j in [1..C!.dimension(i)] do Add(StabGrp[i+1],C!.stabilizer(i,j)); od; i:=i+1; od; StabIrrTable:=[]; i:=0; while C!.dimension(i)>0 do StabIrrTable[i+1]:=[]; for j in [1..C!.dimension(i)] do Add(StabIrrTable[i+1],OrdinaryCharacterTable(StabGrp[i+1][j])); od; i:=i+1; od; N:=i-1; Dimension:=function(k) local d,i; d:=0; for i in [1..C!.dimension(k)] do d:=d+Size(Irr(StabIrrTable[k+1][i])); od; return d; end; PairToTriple:=function(i,j) local k,x; k:=j; x:=1; while k>Size(Irr(StabIrrTable[i+1][x])) do k:=k-Size(Irr(StabIrrTable[i+1][x])); x:=x+1; od; return [i,x,k]; end; TripleToPair:=function(i,j,k) local d,x; d:=0; for x in [1..(j-1)] do d:=d+Size(Irr(StabIrrTable[i+1][x])); od; d:=d+k; return [i,d]; end; PartialBoundaryMatrix:=function(n,k) local bdry,x,Coeffs,Mat,W,A,B,i,xx,irrA,perm,tbA,tbB,c,M,ccA,ccB,ccBA; bdry:=C!.boundary(n,k); Mat:=[]; for i in [1..Length(bdry)] do x:=bdry[i][1]; xx:=AbsInt(x); B:=StabGrp[n+1][k]; A:=ConjugateGroup(B,C!.elts[bdry[i][2]]); tbA:=OrdinaryCharacterTable(A); tbB:=OrdinaryCharacterTable(B); ccB:=tbB!.ConjugacyClasses; ccA:=tbA!.ConjugacyClasses; ccBA:=List(ccB,w->(Representative(w)^C!.elts[bdry[i][2]])^A); c:=List(ccBA,w->Position(ccA,w)); M:=TransposedMat(List([1..Size(ccA)],w->TransposedMat(Irr(A))[c[w]])); perm:=TransformingPermutations(M,Irr(B)); irrA:=Permuted(List(Irr(A),x->Permuted(x,perm.columns)),perm.rows); Coeffs:=MatScalarProducts(Irr(StabIrrTable[n][xx]),InducedClassFunctions(irrA,StabGrp[n][xx])); Add(Mat,[SignInt(x),xx,Coeffs]); od; return Mat; end; BoundaryRec:=[]; for i in [1..N] do BoundaryRec[i]:=[]; for j in [1..C!.dimension(i)] do Add(BoundaryRec[i],PartialBoundaryMatrix(i,j)); # Print([i,j],BoundaryRec[i][j],"\n"); od; od; Boundary:=function(n,k) local w,x,y,i,j,b,d; b:=[]; for i in [1..Dimension(n-1)] do Add(b,0); od; w:=PairToTriple(n,k); #Print("w=",w,"\n"); x:=StructuralCopy(BoundaryRec[n][w[2]]); y:=List(x,a->[a[1],a[2],a[3][w[3]]]); #Print("y=",y,"\n"); for i in [1..Length(y)] do for j in [1..Length(y[i][3])] do if not y[i][3][j]=0 then #Print("[n-1,y[i][2],j]",[n-1,y[i][2],j],"\n"); d:=TripleToPair(n-1,y[i][2],j)[2]; b[d]:=b[d]+y[i][1]*y[i][3][j]; #Add(b,[y[i][1]*TripleToPair(n-1,y[i][2],j)[2],y[i][3][j]]); fi; od; od; #b:=AlgebraicReduction(b); return b; end; return Objectify(HapChainComplex, rec( #elts:=C!.elts, dimension:=Dimension, boundarymatrix:=PartialBoundaryMatrix, boundary:=Boundary, #homotopy:=fail, #group:=Integers, properties:= [["length",N], ["characteristic",0], ["type","chainComplex"]] )); end); ################### end of TensorWithComplexRepresentationRing ############################ ########################################################################################### #0 #F TensorWithBurnsideRing ## Input: ## ## Output: ## ## InstallGlobalFunction(TensorWithBurnsideRing, function(C) local StabConjClss,i,j,N, Dimension,PairToTriple,BoundaryMatrix,Boundary, TripleToPair,StabGrp,BoundaryRec,PartialBoundaryMatrix; StabGrp:=[]; i:=0; while C!.dimension(i)>0 do StabGrp[i+1]:=[]; for j in [1..C!.dimension(i)] do Add(StabGrp[i+1],C!.stabilizer(i,j)); od; i:=i+1; od; StabConjClss:=[]; i:=0; while C!.dimension(i)>0 do StabConjClss[i+1]:=[]; for j in [1..C!.dimension(i)] do Add(StabConjClss[i+1],ConjugacyClassesSubgroups(StabGrp[i+1][j])); od; i:=i+1; od; N:=i-1; Dimension:=function(k) local d,i; d:=0; for i in [1..C!.dimension(k)] do d:=d+Size(StabConjClss[k+1][i]); od; return d; end; PairToTriple:=function(i,j) local k,x; k:=j; x:=1; while k>Size(StabConjClss[i+1][x]) do k:=k-Size(StabConjClss[i+1][x]); x:=x+1; od; return [i,x,k]; end; TripleToPair:=function(i,j,k) local d,x; d:=0; for x in [1..(j-1)] do d:=d+Size(StabConjClss[i+1][x]); od; d:=d+k; return [i,d]; end; PartialBoundaryMatrix:=function(n,k) local bdry,x,Coeffs,Mat,A,i,xx,L,j,B,ccB,ccA; bdry:=C!.boundary(n,k); Mat:=[]; for i in [1..Length(bdry)] do x:=bdry[i][1]; xx:=AbsInt(x); B:=StabGrp[n+1][k]; A:=ConjugateGroup(B,C!.elts[bdry[i][2]]); ccB:=ConjugacyClassesSubgroups(B); ccA:=List(ccB,w->(Representative(w)^C!.elts[bdry[i][2]])^A); L:=List(ccA,w->PositionsProperty(StabConjClss[n][xx],c->Representative(w) in c)); Coeffs:=[]; for j in [1..Length(L)] do Coeffs[j]:=[]; for i in [1..Length(StabConjClss[n][xx])] do if i in L[j] then Coeffs[j][i]:=1; else Coeffs[j][i]:=0; fi; od; od; Add(Mat,[SignInt(x),xx,Coeffs]); od; return Mat; end; BoundaryRec:=[]; for i in [1..N] do BoundaryRec[i]:=[]; for j in [1..C!.dimension(i)] do Add(BoundaryRec[i],PartialBoundaryMatrix(i,j)); # Print([i,j],BoundaryRec[i][j],"\n"); od; od; Boundary:=function(n,k) local w,x,y,i,j,b,d; b:=[]; for i in [1..Dimension(n-1)] do Add(b,0); od; w:=PairToTriple(n,k); x:=StructuralCopy(BoundaryRec[n][w[2]]); y:=List(x,a->[a[1],a[2],a[3][w[3]]]); for i in [1..Length(y)] do for j in [1..Length(y[i][3])] do if not y[i][3][j]=0 then d:=TripleToPair(n-1,y[i][2],j)[2]; b[d]:=b[d]+y[i][1]*y[i][3][j]; #Add(b,[y[i][1]*TripleToPair(n-1,y[i][2],j)[2],y[i][3][j]]); fi; od; od; #b:=AlgebraicReduction(b); return b; end; return Objectify(HapChainComplex, rec( #elts:=C!.elts, classes:=StabConjClss, dimension:=Dimension, boundarymatrix:=PartialBoundaryMatrix, boundary:=Boundary, #homotopy:=fail, #group:=Integers, properties:= [["length",N], ["characteristic",0], ["type","chainComplex"]] )); end); ################### end of TensorWithBurnsideRing ############################