Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
Project: cocalc-sagemath-dev-slelievre
Views: 418386InstallGlobalFunction(SL2ZTree, function(m,p) local t1,t2, Elts,H,K,G,Gamma, Id,ID,Idcoset,BoundaryList, Boundary,Dimension,Action,Stabilizer,Homotopy,StabGrps,pos,RemoveLoops,HtpyRec; Elts:=[[[1,0],[0,1]]]; #StabGrps:=[]; if p=0 then H:=Group([[0,-1],[1,0]]); K:=Group([[0,-1],[1,1]]); G:=SL(2,Integers); Gamma:=Group([[-1,0],[0,-1]]); Append(Elts,Elements(H)); Append(Elts,Elements(K)); Append(Elts,Elements(Gamma)); Elts:=SSortedList(Elts); else if m=1 then H:=SL(2,Integers); K:=SL2Z(p); Gamma:=CongruenceSubgroupGamma0(p); else H:=SL2Z(1/m); #K:=SL2Z(p); K:=ConjugateSL2ZGroup(H,[[1,0],[0,p]]); Gamma:=CongruenceSubgroup(m,p); fi; G:=SL2Z(1/(m*p)); ID:=Group(One(G)); #Gamma:=CongruenceSubgroupGamma0(p); Append(Elts,GeneratorsOfGroup(H)); Append(Elts,GeneratorsOfGroup(K)); Append(Elts,GeneratorsOfGroup(Gamma)); Elts:=SSortedList(Elts); fi; SetName(Gamma,"Gamma"); Id:=Position(Elts,[[1,0],[0,1]]); ####################### pos:=function(Elts,g) local posit; posit:=Position(Elts,g); if posit=fail then Add(Elts,g); return Length(Elts); else return posit; fi; end; ###################### BoundaryList:=[]; t1:=pos(Elts,CanonicalRightCountableCosetElement(H,Elts[Id]^-1)^-1); t2:=pos(Elts,CanonicalRightCountableCosetElement(K,Elts[Id]^-1)^-1); Append(BoundaryList,[[[1,t1],[-2,t2]]]); ####################### Boundary:=function(n,k) local w; if not n=1 then return [];fi; w:=BoundaryList[AbsInt(k)]; #w:=[[1,Id],[-2,Id]]; if k>0 then return w; else return NegateWord(w); fi; end; ####################### Dimension:=function(n) if not n in [0,1] then return 0;fi; if n=0 then return 2;fi; if n=1 then return 1;fi; end; ####################### ####################### Action:=function(n,k,l); return 1; end; ####################### StabGrps:=[]; Add(StabGrps,[H,K]); Add(StabGrps,[Gamma]); ####################### Stabilizer:=function(n,k); return StabGrps[n+1][k]; end; ####################### Idcoset:=pos(Elts,CanonicalRightCountableCosetElement(Gamma,Elts[Id]^-1)^-1); ########################### RemoveLoops:=function(d) local i,h,j,l; l:=StructuralCopy(d); h:=[[1,0],[0,1]]; i:=1; while i<Length(d) do h:=h*d[i]; if h in H or h in K then for j in [1..i-1] do Remove(l,1); od; l[1]:=h; fi; i:=i+1; od; return l; end; ############################ HtpyRec:=[]; HtpyRec[1]:=[]; HtpyRec[2]:=[]; ####################### Homotopy:=function(n,w) local d,path,i,h,k,g,pk,r,t; k:=w[1]; g:=w[2]; pk:=AbsInt(k); if not IsBound(HtpyRec[pk][g]) then d:=SL2ZmElementsDecomposition(Elts[g],p); #if p=0 then r:=[]; Add(r,d[1]); for i in [2..Length(d)] do if d[i]*d[i-1] in H then r[Length(r)]:=r[Length(r)]*d[i]; else Add(r,d[i]); fi; od; d:=r; r:=[]; Add(r,d[1]); for i in [2..Length(d)] do if d[i]*d[i-1] in K then r[Length(r)]:=r[Length(r)]*d[i]; else Add(r,d[i]); fi; od; d:=StructuralCopy(r); #fi; ########################### #Print("d=",d,"\n"); d:=RemoveLoops(d); #Print("d=",d,"\n"); if (d[1] in K) and (not d[1] in Gamma) then #Print("test"); r:=[[[1,0],[0,1]]]; Append(r,d); d:=StructuralCopy(r); #Print("d=",d,"\n"); fi; #Print("d=",d,"\n"); h:=[[1,0],[0,1]]; path:=[]; if d[Length(d)] in Gamma and Length(d)>1 then Remove(d,Length(d));fi; if pk=1 then #if g in Gamma then return [1,Id];fi; if d[Length(d)] in H then Remove(d,Length(d));fi; for i in [1..Length(d)] do #d[i]:=CanonicalRightCosetElement(Gamma,d[i]^-1)^-1; #if h in H then h:=[[1,0],[0,1]];path:=[];fi; h:=h*d[i]; t:=CanonicalRightCountableCosetElement(Gamma,h^-1)^-1; Add(path,[(-1)^(i),pos(Elts,t)]); #if h in H and i<Length(d) then path:=[];fi; od; else #Print("d=",d,"\n"); if Elts[g] in Gamma then Add(path,[-1,Idcoset]);fi; if d[Length(d)] in K then Remove(d,Length(d));fi; for i in [1..Length(d)] do #d[i]:=CanonicalRightCosetElement(Gamma,d[i]^-1)^-1; h:=h*d[i]; #Print("h=",h,"\n"); t:=CanonicalRightCountableCosetElement(Gamma,h^-1)^-1; Add(path,[(-1)^(i),pos(Elts,t)]); #h:=h*d[i]; #if h in K and i<Length(d) then path:=[];fi; od; fi; HtpyRec[pk][g]:=path; fi; if k>0 then return HtpyRec[pk][g]; else return NegateWord(HtpyRec[pk][g]); fi; end; ####################### ####################### return Objectify(HapNonFreeResolution, rec( dimension:=Dimension, boundary:=Boundary, homotopy:=Homotopy, elts:=Elts, group:=G, stabilizer:=Stabilizer, action:=Action, properties:= [["length",100], ["characteristic",0], ["type","resolution"]] )); end); ################################################################### InstallGlobalFunction(TreeOfResolutionsToSL2Zcomplex, function(D,G) local RH,RK,RGamma, H,K,Gamma, NameH, i,j,m,p, C,Resolutions,NamesOfGroups; RH:=D[1]; RK:=D[2]; RGamma:=D[3]; H:=RH!.group; K:=RK!.group; Gamma:=RGamma!.group; NameH:=H!.Name; if H=SL(2,Integers) then m:=1; p:=Gamma!.LevelOfCongruenceSubgroup; else i:=Position(NameH,'/'); j:=Position(NameH,']'); m:=Int(NameH{[i+1..j-1]}); p:=Gamma!.levels[2]; fi; NamesOfGroups:=[Name(H),Name(K),Name(Gamma)]; Resolutions:=[RH,RK,RGamma]; C:=SL2ZTree(m,p); C!.resolutions:=[Resolutions,NamesOfGroups]; return C; end); ####################################################################