Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
Project: cocalc-sagemath-dev-slelievre
Views: 418384#Decompose a element in SL(2,Z[1/p*n]) into product of elements in SL(2,Z[1/n]) and its conjugation by P=[[1,0],[0,p]] InstallGlobalFunction(SL2ZmElementsDecomposition, function(g,p) local i,j,q,k,d, S,T,Y,Spr,Tpr,A,B,C, l,t,r,m,H,h,K, PrimeFactorization,TriangleMatrixDecomposition,InverseOfMatricesList; S:=[[0,1],[-1,0]]; T:=[[1,0],[1,1]]; Y:=[[0,-1],[1,1]]; l:=[[1,0],[0,1]]; t:=[]; r:=[]; H:=Group(S); K:=Group(Y); ########################################## PrimeFactorization:=function(n,p) #find the power of p in the prime factorization of n local r,k; r:=-1; k:=n; while IsInt(k) do r:=r+1; k:=k/p; od; return r; end; ########################################### TriangleMatrixDecomposition:=function(g,p) #Decomposition for a upper triangle matrix # with p-factor appears in the numerator of (1,1)-entry local S,T,Spr,r, l,q,d,x,id; S:=[[0,1],[-1,0]]; T:=[[1,0],[1,1]]; Spr:=[[0,p^-1],[-p,0]]; l:=[[1,0],[0,1]]; d:=[]; id:=[[1,0],[0,1]]; while g[1][2]<>0 do if g[1][2]*g[2][2]<0 and IsInt(g[2][2]/g[1][2])=false then q:=Int(g[2][2]/g[1][2])-1; else q:=Int(g[2][2]/g[1][2]); fi; l:=T^(-q)*l; g:=T^(-q)*g; if AbsoluteValue(g[1][2])>AbsoluteValue(g[2][2]) and g[1][2] <> 0 then l:=S*l; g:=S*g; fi; od; l:=l^-1; x:=PrimeFactorization(NumeratorRat(g[1][1]),p); r:=[[g[1][1]*p^-x,0],[g[2][1]*p^x,g[2][2]*p^x]]; while x>0 do Append(d,[S^3,Spr]); x:=x-1; od; d[1]:=l*d[1]; if r=-id then d[1]:=S^2*d[1]; else if not r=id then Add(d,r);fi; fi; return d; end; ############################################### InverseOfMatricesList:=function(list) #input a list of matrices [A,B,C] #output a list of matrices [C^-1,B^-1,A^-1] local i,n,d; n:=Length(list); d:=[]; for i in [1..n] do Add(d,list[n-i+1]^-1); od; return d; end; ########################################### if p=0 then #In case of decompose SL(2,Z) into product of elements in C4 and C6 if g=[[1,0],[0,1]] then return [g];fi; while g[1][2]<>0 do if g[1][1]*g[1][2]<0 and IsInt(g[1][1]/g[1][2])=false then q:=Int(g[1][1]/g[1][2])-1; else q:=Int(g[1][1]/g[1][2]); fi; g:=g*T^(-q); q:=-q; if q>0 then while q>0 do Append(t,[S^3,Y^-1]); q:=q-1; od; fi; if q<0 then while q<0 do Append(t,[Y,S^-3]); q:=q+1; od; fi; if AbsoluteValue(g[1][1])<AbsoluteValue(g[1][2]) then Add(t,S); g:=g*S; fi; od; #Print("t=",t,"\n"); #Print("g=",g,"\n"); t:=InverseOfMatricesList(t); if g[1][1]>0 then q:=g[2][1]; if q>0 then while q>0 do Append(r,[S^3,Y^-1]); q:=q-1; od; fi; if q<0 then while q<0 do Append(r,[Y,S^-3]); q:=q+1; od; fi; else Add(r,S^2); q:=-g[2][1]; if q>0 then while q>0 do Append(r,[S^3,Y^-1]); q:=q-1; od; fi; if q<0 then while q<0 do Append(r,[Y,S^-3]); q:=q+1; od; fi; fi; Append(r,t); m:=[]; Add(m,r[1]); for i in [2..Length(r)] do if r[i]*r[i-1] in H or r[i]*r[i-1] in K then m[Length(m)]:=m[Length(m)]*r[i]; else Add(m,r[i]); fi; od; r:=[]; Add(r,m[1]); for i in [2..Length(m)] do if m[i]*m[i-1] in H or m[i]*m[i-1] in K then r[Length(r)]:=r[Length(r)]*m[i]; else Add(r,m[i]); fi; od; return r; else # in case of decompose SL(2,Z[1/p*n]) into product of elements in SL(2,Z[1/n]) and its conjugation by P=[[1,0],[0,p]] if PrimeFactorization(DenominatorRat(g[1][1]),p)+PrimeFactorization(DenominatorRat(g[1][2]),p)+PrimeFactorization(DenominatorRat(g[2][1]),p)+PrimeFactorization(DenominatorRat(g[2][2]),p)=0 then return [g]; fi; Spr:=[[0,p^-1],[-p,0]]; Tpr:=[[1,0],[p,1]]; while g[1][1]<>0 do if g[1][1]*g[2][1]<0 and IsInt(g[2][1]/g[1][1])=false then q:=Int(g[2][1]/g[1][1])-1; else q:=Int(g[2][1]/g[1][1]); fi; l:=T^(-q)*l; g:=T^(-q)*g; if AbsoluteValue(g[1][1])>AbsoluteValue(g[2][1]) then l:=S*l; g:=S*g; fi; od; l:=S*l; g:=S*g; l:=l^-1; #Print("l=",l,"\n"); #Print("g=",g,"\n"); k:=PrimeFactorization(NumeratorRat(g[1][1]),p); if k>0 then d:=TriangleMatrixDecomposition(g,p); d[1]:=l*d[1]; else d:=TriangleMatrixDecomposition(g^-1,p); #Print("d=",d,"\n"); if d[Length(d)] in SL2Z(p) and not d[Length(d)] in CongruenceSubgroupGamma0(p) then Add(d,l^-1); d:=InverseOfMatricesList(d); else d:=InverseOfMatricesList(d); d[1]:=l*d[1]; fi; fi; r:=[d[1]]; for i in [2..Length(d)] do if d[i]*d[i-1] in H or d[i]*d[i-1] in K then r[Length(r)]:=r[Length(r)]*d[i]; else Add(r,d[i]); fi; od; return r; fi; end); #T:=[[1,0],[1,1]];S:=[[0,1],[-1,0]];Up1:=[[2,0],[0,2^-1]];Up2:=[[3,0],[0,3^-1]];Y:=[[0,-1],[1,1]];Up3:=[[5,0],[0,5^-1]];