Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
Project: cocalc-sagemath-dev-slelievre
Views: 418384InstallGlobalFunction(FactorizationNParts, # decompose a positive integer d into product of n integers function(d,n) local t,faclst,x,w,y,j; if n=1 then return [[d]];fi; ### t:=DivisorsInt(d); faclst:=[]; for x in t do y:=FactorizationNParts(d/x,n-1); for j in y do Add(faclst,AddFirst(j,x)); od; od; return faclst; end); ################################################### InstallGlobalFunction(CrystGFullBasis, # search for a G-fullbasis of a G-lattice # for the given crystallographic G generated by # the set of generators S function(arg) local G,P,Bt,d,n,vect, i,j,a,faclst,S,gens,L,c, B_delta,ctr,v, x,SbGrp,T,coef,SubgroupsOfAutCube; ########## SubgroupsOfAutCube:=[ [ "1", "C2", "C2 x C2", "C4", "D8" ], [ "1", "C2", "C3", "C2 x C2", "C4", "C6", "S3", "C2 x C2 x C2", "D8", "C4 x C2", "A4", "D12", "C2 x D8", "C2 x A4", "S4", "C2 x S4" ], [ "1", "C2", "C3", "C2 x C2", "C4", "S3", "C6", "C2 x C2 x C2", "D8", "C4 x C2", "C8", "Q8", "D12", "A4", "C6 x C2", "(C4 x C2) : C2", "C2 x D8", "C2 x C2 x C2 x C2", "C4 x C4", "C8 : C2", "C4 : C4", "D16", "QD16", "C4 x C2 x C2", "C2 x A4", "S4", "SL(2,3)", "C2 x C2 x S3", "C2 x C2 x D8", "(C4 x C2 x C2) : C2", "C4 x D8", "((C4 x C2) : C2) : C2", "(C2 x D8) : C2", "(C2 x C2 x C2 x C2) : C2", "(C8 : C2) : C2", "(C4 x C4) : C2", "C2 x S4", "C2 x C2 x A4", "GL(2,3)", "((C4 x C4) : C2) : C2", "(((C4 x C2) : C2) : C2) : C2", "D8 x D8", "((C8 : C2) : C2) : C2", "C2 x C2 x S4", "((C2 x D8) : C2) : C3", "(D8 x D8) : C2", "(((C2 x D8) : C2) : C3) : C2", "((((C2 x D8) : C2) : C3) : C2) : C2" ] ]; ############### gens:=GeneratorsOfGroup(arg[1]); G:=AffineCrystGroup(gens); SbGrp:=TranslationSubGroup(G); Bt:=G!.TranslationBasis; n:=G!.DimensionOfMatrixGroup-1; P:=PointGroup(G); if not StructureDescription(P) in SubgroupsOfAutCube[n-1] then return false; fi; if not GramianOfAverageScalarProductFromFiniteMatrixGroup(P)=IdentityMat(n) then return "Gramian matrix is not identity matrix"; fi; if Length(arg)=1 then L:=CrystCubicalTiling(n); Add(L,Bt,1); for i in [1..Length(L)] do B_delta:=CrystGFullBasis(G,[L[i],Sum(L[i])/2]); if IsList(B_delta) then return B_delta; fi; od; return fail; else #begin of length 2 input L:=arg[2][1]; c:=arg[2][2]; vect:=Sum(L)/2-c; S:=RightTransversal(G,SbGrp); d:=DivisorsInt(Order(P)); i:=Length(d); ########## while i>0 do faclst:=FactorizationNParts(d[i],n); for x in faclst do B_delta:=List([1..n],i->x[i]^-1*L[i]); if IsCrystSufficientLattice(B_delta,S) then ## ctr:=Sum(B_delta)/2-vect; #test if one vertex of fundamental domain is origin coef:=CombinationDisjointSets(x); j:=1; while j <= d[i] do v:=ctr+coef[j]*B_delta; if IsCrystSameOrbit(G,Bt,S,ctr,v)=false then break;fi; j:=j+1; od; if j=d[i]+1 then return [B_delta,ctr];fi; ### ctr:=0*vect; #test if center of fundamental domain is origin j:=1; while j <= d[i] do v:=ctr+coef[j]*B_delta; if IsCrystSameOrbit(G,Bt,S,ctr,v)=false then break;fi; j:=j+1; od; if j=d[i]+1 then return [B_delta,ctr];fi; ### fi; od; i:=i-1; od; return fail; fi; #end of length 2 input end);