Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
Project: cocalc-sagemath-dev-slelievre
Views: 418346############################################################################# ## ## HAPPRIME - ringhomomorphism.gd ## Functions, Operations and Methods to implement ring homomorphisms ## Paul Smith ## ## Copyright (C) 2008 ## Paul Smith ## National University of Ireland Galway ## ## This file is part of HAPprime. ## ## HAPprime is free software; you can redistribute it and/or modify ## it under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 2 of the License, or ## (at your option) any later version. ## ## HAPprime is distributed in the hope that it will be useful, ## but WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ## GNU General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program. If not, see <http://www.gnu.org/licenses/>. ## ## $Id: ringhomomorphism.gd 354 2008-12-09 17:38:12Z pas $ ## ############################################################################# ##################################################################### ## <#GAPDoc Label="HAPRingHomomorphismFilter_DTmanRingHomomorphismNODOC"> ## <ManSection> ## <Filt Name="IsHAPRingHomomorphism" Arg="O" Type="Category"/> ## <Returns> ## <K>true</K> if the object is a <K>HAPRingHomomorphism</K>, or ## <K>false</K> otherwise ## </Returns> ## </ManSection> ## <#/GAPDoc> ##################################################################### DeclareCategory("IsHAPRingHomomorphism", IsObject); # Note this also defines the function IsHAPRingHomomorphism ##################################################################### ##################################################################### ## <#GAPDoc Label="HAPRingHomomorphismFamilyAttr_DTmanRingHomomorphismNODOC"> ## <ManSection> ## <Fam Name="HAPRingHomomorphismFamily"/> ## <Description> ## The family to which <K>HAPRingHomomorphism</K> objects belong. ## </Description> ## </ManSection> ## <#/GAPDoc> ##################################################################### DeclareAttribute("HAPRingHomomorphismFamily", IsFamily); # Note this also defines the function HAPRingHomomorphismFamily ##################################################################### ####################################################################### # # Declarations for Operations in ringhomomorphism.gi # DeclareOperation("HAPRingToSubringHomomorphism", [IsPolynomialRing, IsHomogeneousList, IsHomogeneousList and IsRationalFunctionCollection]); DeclareOperation("HAPSubringToRingHomomorphism", [IsHomogeneousList and IsRationalFunctionCollection, IsHomogeneousList, IsPolynomialRing]); DeclareOperation("HAPSubringToRingHomomorphism", [IsHomogeneousList and IsRationalFunctionCollection, IsPolynomialRing, IsHomogeneousList]); DeclareOperation("HAPRingHomomorphismByIndeterminateMap", [IsPolynomialRing, IsHomogeneousList, IsPolynomialRing]); DeclareOperation("HAPRingReductionHomomorphism", [IsPolynomialRing, IsHomogeneousList, IsHomogeneousList]); DeclareOperation("HAPRingReductionHomomorphism", [IsHAPRingHomomorphism, IsHomogeneousList]); DeclareOperation("HAPZeroRingHomomorphism", [IsPolynomialRing, IsHomogeneousList]); DeclareOperation("CompositionRingHomomorphism", [IsHAPRingHomomorphism, IsHAPRingHomomorphism]); DeclareAttribute("InverseRingHomomorphism", IsHAPRingHomomorphism); DeclareAttribute("SourcePolynomialRing", IsHAPRingHomomorphism); DeclareAttribute("SourceGenerators", IsHAPRingHomomorphism); DeclareAttribute("SourceRelations", IsHAPRingHomomorphism); DeclareAttribute("ImagePolynomialRing", IsHAPRingHomomorphism); DeclareAttribute("ImageGenerators", IsHAPRingHomomorphism); DeclareAttribute("ImageRelations", IsHAPRingHomomorphism); DeclareOperation("ImageOfRingHomomorphism", [IsHAPRingHomomorphism, IsHomogeneousList and IsRationalFunctionCollection]); DeclareOperation("PreimageOfRingHomomorphism", [IsHAPRingHomomorphism, IsHomogeneousList and IsRationalFunctionCollection]); DeclareGlobalFunction("HAPPRIME_MakeEliminationOrdering"); DeclareGlobalFunction("HAPPRIME_RingHomomorphismsAreComposable"); ##################################################################### ## <#GAPDoc Label="SourceGenerators_DTmanRingHomomorphism_Dat"> ## <ManSection> ## <Attr Name="SourceGenerators" Arg="phi"/> ## <Returns> ## List ## </Returns> ## <Description> ## A list of generators for the source ring <M>R/I</M> of the ring ## homomorphism. ## <A>phi</A>. ## </Description> ## </ManSection> ## <#/GAPDoc> ##################################################################### ## <#GAPDoc Label="SourceRelations_DTmanRingHomomorphism_Dat"> ## <ManSection> ## <Attr Name="SourceRelations" Arg="phi"/> ## <Returns> ## List ## </Returns> ## <Description> ## A list of the relations that generate the ideal <M>I</M> of in the source ## ring of the ring homomorphism <A>phi</A>. ## </Description> ## </ManSection> ## <#/GAPDoc> ##################################################################### ## <#GAPDoc Label="SourcePolynomialRing_DTmanRingHomomorphism_Dat"> ## <ManSection> ## <Attr Name="SourcePolynomialRing" Arg="phi"/> ## <Returns> ## <K>PolynomialRing</K> ## </Returns> ## <Description> ## Returns the polynomial ring which contains the source ring of the ## ring homomorphism <A>phi</A>. ## Polynomials to be mapped by <A>phi</A> must be in this ring. ## </Description> ## </ManSection> ## <#/GAPDoc> ##################################################################### ## <#GAPDoc Label="ImageGenerators_DTmanRingHomomorphism_Dat"> ## <ManSection> ## <Attr Name="ImageGenerators" Arg="phi"/> ## <Returns> ## List ## </Returns> ## <Description> ## A list of generators for the image ring <M>S/J</M> of the ring ## homomorphism <A>phi</A>. ## </Description> ## </ManSection> ## <#/GAPDoc> ##################################################################### ## <#GAPDoc Label="ImageRelations_DTmanRingHomomorphism_Dat"> ## <ManSection> ## <Attr Name="ImageRelations" Arg="phi"/> ## <Returns> ## List ## </Returns> ## <Description> ## A list of the relations that generate the ideal <M>J</M> of in the image ## ring of the ring homomorphism <A>phi</A>. ## </Description> ## </ManSection> ## <#/GAPDoc> ##################################################################### ## <#GAPDoc Label="ImagePolynomialRing_DTmanRingHomomorphism_Dat"> ## <ManSection> ## <Attr Name="ImagePolynomialRing" Arg="phi"/> ## <Returns> ## <K>PolynomialRing</K> ## </Returns> ## <Description> ## Returns the polynomial ring which contains the image of the ## ring homomorphism <A>phi></A>. All polynomials mapped by <A>phi</A> will ## be in this ring. ## </Description> ## </ManSection> ## <#/GAPDoc> #####################################################################