Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
Project: cocalc-sagemath-dev-slelievre
Views: 418384HAP_GCOMPLEX_SETUP:=[false]; if IsBound(x) then HAP_GCOMPLEX_SETUP[2]:=x;fi; x:=(-1+Sqrt(-11))/2; HAP_GCOMPLEX_LIST := [ [ rec( TheMatrixStab := Group([ [[ 1, 0 ],[ 0, 1]] , [[ -1, 0 ],[ 0, -1]] , [[ 1, 1 ],[ -1, 0]] , [[ -1, -1 ],[ 1, 0]] , [[ 0, 1 ],[ -1, -1]] , [[ 0, -1 ],[ 1, 1]] ]), TheRotSubgroup := Group([ [[ 1, 0 ],[ 0, 1]] , [[ -1, 0 ],[ 0, -1]] , [[ 1, 1 ],[ -1, 0]] , [[ -1, -1 ],[ 1, 0]] , [[ 0, 1 ],[ -1, -1]] , [[ 0, -1 ],[ 1, 1]] ]), BoundaryImage := rec( ListIFace:=[], ListSign:=[], ListElt:=[]) ), rec( TheMatrixStab := Group([ [[ 1, 0 ],[ 0, 1]] , [[ -1, 0 ],[ 0, -1]] , [[ x, -1 ],[ -x - 2, -x]] , [[ -x, 1 ],[ x + 2, x]] , [[ x + 1, x - 1 ],[ -1, -x - 1]] , [[ -x - 1, -x + 1 ],[ 1, x + 1]] , [[ 2, x + 2 ],[ x - 1, -2]] , [[ -2, -x - 2 ],[ -x + 1, 2]] , [[ x + 2, x ],[ -2, -x - 1]] , [[ -x - 2, -x ],[ 2, x + 1]] , [[ -1, -x - 1 ],[ -x, 2]] , [[ 1, x + 1 ],[ x, -2]] , [[ 0, -1 ],[ 1, 1]] , [[ 0, 1 ],[ -1, -1]] , [[ -x + 1, 2 ],[ x + 1, x]] , [[ x - 1, -2 ],[ -x - 1, -x]] , [[ x + 1, x ],[ -2, -x - 2]] , [[ -x - 1, -x ],[ 2, x + 2]] , [[ x, -2 ],[ -x - 1, -x + 1]] , [[ -x, 2 ],[ x + 1, x - 1]] , [[ 1, 1 ],[ -1, 0]] , [[ -1, -1 ],[ 1, 0]] , [[ -2, -x - 1 ],[ -x, 1]] , [[ 2, x + 1 ],[ x, -1]] ]), TheRotSubgroup := Group([ [[ 1, 0 ],[ 0, 1]] , [[ -1, 0 ],[ 0, -1]] , [[ x, -1 ],[ -x - 2, -x]] , [[ -x, 1 ],[ x + 2, x]] , [[ x + 1, x - 1 ],[ -1, -x - 1]] , [[ -x - 1, -x + 1 ],[ 1, x + 1]] , [[ 2, x + 2 ],[ x - 1, -2]] , [[ -2, -x - 2 ],[ -x + 1, 2]] , [[ x + 2, x ],[ -2, -x - 1]] , [[ -x - 2, -x ],[ 2, x + 1]] , [[ -1, -x - 1 ],[ -x, 2]] , [[ 1, x + 1 ],[ x, -2]] , [[ 0, -1 ],[ 1, 1]] , [[ 0, 1 ],[ -1, -1]] , [[ -x + 1, 2 ],[ x + 1, x]] , [[ x - 1, -2 ],[ -x - 1, -x]] , [[ x + 1, x ],[ -2, -x - 2]] , [[ -x - 1, -x ],[ 2, x + 2]] , [[ x, -2 ],[ -x - 1, -x + 1]] , [[ -x, 2 ],[ x + 1, x - 1]] , [[ 1, 1 ],[ -1, 0]] , [[ -1, -1 ],[ 1, 0]] , [[ -2, -x - 1 ],[ -x, 1]] , [[ 2, x + 1 ],[ x, -1]] ]), BoundaryImage := rec( ListIFace:=[], ListSign:=[], ListElt:=[]) ), rec( TheMatrixStab := Group([ [[ 1, 0 ],[ 0, 1]] , [[ -1, 0 ],[ 0, -1]] , [[ 0, 1 ],[ -1, 0]] , [[ 0, -1 ],[ 1, 0]] ]), TheRotSubgroup := Group([ [[ 1, 0 ],[ 0, 1]] , [[ -1, 0 ],[ 0, -1]] , [[ 0, 1 ],[ -1, 0]] , [[ 0, -1 ],[ 1, 0]] ]), BoundaryImage := rec( ListIFace:=[], ListSign:=[], ListElt:=[]) ), rec( TheMatrixStab := Group([ [[ 1, 0 ],[ 0, 1]] , [[ -1, 0 ],[ 0, -1]] , [[ x - 1, -x - 2 ],[ -x - 2, -x + 1]] , [[ -x + 1, x + 2 ],[ x + 2, x - 1]] , [[ 0, 1 ],[ -1, 0]] , [[ 0, -1 ],[ 1, 0]] , [[ x + 2, x - 1 ],[ x - 1, -x - 2]] , [[ -x - 2, -x + 1 ],[ -x + 1, x + 2]] , [[ x + 1, -1 ],[ -2, -x]] , [[ -x - 1, 1 ],[ 2, x]] , [[ -1, -x - 1 ],[ -x, 2]] , [[ 1, x + 1 ],[ x, -2]] , [[ -x, 2 ],[ 1, x + 1]] , [[ x, -2 ],[ -1, -x - 1]] , [[ 2, x ],[ x + 1, -1]] , [[ -2, -x ],[ -x - 1, 1]] , [[ x, -1 ],[ -2, -x - 1]] , [[ -x, 1 ],[ 2, x + 1]] , [[ -1, -x ],[ -x - 1, 2]] , [[ 1, x ],[ x + 1, -2]] , [[ x + 1, -2 ],[ -1, -x]] , [[ -x - 1, 2 ],[ 1, x]] , [[ -2, -x - 1 ],[ -x, 1]] , [[ 2, x + 1 ],[ x, -1]] ]), TheRotSubgroup := Group([ [[ 1, 0 ],[ 0, 1]] , [[ -1, 0 ],[ 0, -1]] , [[ x - 1, -x - 2 ],[ -x - 2, -x + 1]] , [[ -x + 1, x + 2 ],[ x + 2, x - 1]] , [[ 0, 1 ],[ -1, 0]] , [[ 0, -1 ],[ 1, 0]] , [[ x + 2, x - 1 ],[ x - 1, -x - 2]] , [[ -x - 2, -x + 1 ],[ -x + 1, x + 2]] , [[ x + 1, -1 ],[ -2, -x]] , [[ -x - 1, 1 ],[ 2, x]] , [[ -1, -x - 1 ],[ -x, 2]] , [[ 1, x + 1 ],[ x, -2]] , [[ -x, 2 ],[ 1, x + 1]] , [[ x, -2 ],[ -1, -x - 1]] , [[ 2, x ],[ x + 1, -1]] , [[ -2, -x ],[ -x - 1, 1]] , [[ x, -1 ],[ -2, -x - 1]] , [[ -x, 1 ],[ 2, x + 1]] , [[ -1, -x ],[ -x - 1, 2]] , [[ 1, x ],[ x + 1, -2]] , [[ x + 1, -2 ],[ -1, -x]] , [[ -x - 1, 2 ],[ 1, x]] , [[ -2, -x - 1 ],[ -x, 1]] , [[ 2, x + 1 ],[ x, -1]] ]), BoundaryImage := rec( ListIFace:=[], ListSign:=[], ListElt:=[]) ), ], [ rec( TheMatrixStab := Group([ [[ -1, -1 ],[ 1, 0]] , [[ -1, 0 ],[ 0, -1]] , [[ 0, -1 ],[ 1, 1]] , [[ 0, 1 ],[ -1, -1]] , [[ 1, 0 ],[ 0, 1]] , [[ 1, 1 ],[ -1, 0]] ]), TheRotSubgroup := Group([ [[ -1, -1 ],[ 1, 0]] , [[ -1, 0 ],[ 0, -1]] , [[ 0, -1 ],[ 1, 1]] , [[ 0, 1 ],[ -1, -1]] , [[ 1, 0 ],[ 0, 1]] , [[ 1, 1 ],[ -1, 0]] ]), BoundaryImage := rec( ListIFace:=[ 1, 2], ListSign := [-1,1], ListElt := [IdentityMat(2), IdentityMat(2)]) ), rec( TheMatrixStab := Group([ [[ -1, 0 ],[ 0, -1]] , [[ 1, 0 ],[ 0, 1]] ]), TheRotSubgroup := Group([ [[ -1, 0 ],[ 0, -1]] , [[ 1, 0 ],[ 0, 1]] ]), BoundaryImage := rec( ListIFace:=[ 3, 1], ListSign := [-1,1], ListElt := [IdentityMat(2), IdentityMat(2)]) ), rec( TheMatrixStab := Group([ [[ -x - 1, -x + 1 ],[ 1, x + 1]] , [[ -1, 0 ],[ 0, -1]] , [[ 1, 0 ],[ 0, 1]] , [[ x + 1, x - 1 ],[ -1, -x - 1]] ]), TheRotSubgroup := Group([ [[ -x - 1, -x + 1 ],[ 1, x + 1]] , [[ -1, 0 ],[ 0, -1]] , [[ 1, 0 ],[ 0, 1]] , [[ x + 1, x - 1 ],[ -1, -x - 1]] ]), BoundaryImage := rec( ListIFace:=[ 3, 2], ListSign := [-1,1], ListElt := [[[ -x - 1, -1 ],[ 1, 0]], IdentityMat(2)]) ), rec( TheMatrixStab := Group([ [[ -1, -x - 1 ],[ -x, 2]] , [[ -1, 0 ],[ 0, -1]] , [[ -2, -x - 1 ],[ -x, 1]] , [[ 1, 0 ],[ 0, 1]] , [[ 1, x + 1 ],[ x, -2]] , [[ 2, x + 1 ],[ x, -1]] ]), TheRotSubgroup := Group([ [[ -1, -x - 1 ],[ -x, 2]] , [[ -1, 0 ],[ 0, -1]] , [[ -2, -x - 1 ],[ -x, 1]] , [[ 1, 0 ],[ 0, 1]] , [[ 1, x + 1 ],[ x, -2]] , [[ 2, x + 1 ],[ x, -1]] ]), BoundaryImage := rec( ListIFace:=[ 4, 2], ListSign := [-1,1], ListElt := [IdentityMat(2), IdentityMat(2)]) ), rec( TheMatrixStab := Group([ [[ -1, 0 ],[ 0, -1]] , [[ 0, -1 ],[ 1, 0]] , [[ 0, 1 ],[ -1, 0]] , [[ 1, 0 ],[ 0, 1]] ]), TheRotSubgroup := Group([ [[ -1, 0 ],[ 0, -1]] , [[ 0, -1 ],[ 1, 0]] , [[ 0, 1 ],[ -1, 0]] , [[ 1, 0 ],[ 0, 1]] ]), BoundaryImage := rec( ListIFace:=[ 3, 4], ListSign := [-1,1], ListElt := [IdentityMat(2), IdentityMat(2)]) ), rec( TheMatrixStab := Group([ [[ -x - 1, 2 ],[ 1, x]] , [[ -1, 0 ],[ 0, -1]] , [[ -x, 2 ],[ 1, x + 1]] , [[ x, -2 ],[ -1, -x - 1]] , [[ 1, 0 ],[ 0, 1]] , [[ x + 1, -2 ],[ -1, -x]] ]), TheRotSubgroup := Group([ [[ -x - 1, 2 ],[ 1, x]] , [[ -1, 0 ],[ 0, -1]] , [[ -x, 2 ],[ 1, x + 1]] , [[ x, -2 ],[ -1, -x - 1]] , [[ 1, 0 ],[ 0, 1]] , [[ x + 1, -2 ],[ -1, -x]] ]), BoundaryImage := rec( ListIFace:=[ 1, 4], ListSign := [-1,1], ListElt := [[[ -x - 1, -1 ],[ 1, 0]], IdentityMat(2)]) ), ], [ rec( TheMatrixStab := Group([-IdentityMat(2)]), TheRotSubgroup := Group([-IdentityMat(2)]), BoundaryImage := rec( ListIFace:=[ 4 , 1 , 2 , 5 ], ListSign := [ -1 , 1 , 1 , -1 ], ListElt := [ IdentityMat(2) , IdentityMat(2) , IdentityMat(2) , IdentityMat(2) ])) , rec( TheMatrixStab := Group([-IdentityMat(2)]), TheRotSubgroup := Group([-IdentityMat(2)]), BoundaryImage := rec( ListIFace:=[ 4 , 6 , 3 , 2 ], ListSign := [ 1 , 1 , -1 , 1 ], ListElt := [ IdentityMat(2) , IdentityMat(2) , IdentityMat(2) , [[ -x - 1, -1 ],[ 1, 0]] ])) ], ]; if IsBound(HAP_GCOMPLEX_SETUP[2]) then x:=HAP_GCOMPLEX_SETUP[2]; else Unbind(x); fi;