Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
Project: cocalc-sagemath-dev-slelievre
Views: 418346#(C) Irina Kholodna, 2001 (converted to HAP format by Graham Ellis) ##################################################################### InstallGlobalFunction(ResolutionSmallFpGroup, function(arg) local G,n, table, Table, NullList, LastFactor, WordsToIntegers, Der, IntegersToWords, VectorPermutations, GenerateAsZGModule, FoxMatrix, Is_ZLinearComb, MinimalModuleGenerators, IdentityModuleZBasis, IdentityModuleGenerators, Resolution, IrinasRes, ExtendIrinasRes, Dimension, Boundary, EltsG, OrderG, Int2Pair, FoxM, Charact, FpToPerm, pG; G:=arg[1]; n:=arg[2]; if Length(arg)>2 then Charact:=arg[3]; else Charact:=0; fi; OrderG:=Order(G); FpToPerm:=IsomorphismPermGroup(G); pG:=Image(FpToPerm); EltsG:=List(Elements(pG),x->PreImagesRepresentative(FpToPerm,x)); ########################START OF IRINA'S CODE ####################### ##################################################################### # GAP V.4 FUNCTIONS FOR COMPUTING THE MODULE OF IDENTITIES AND THE LOW- # DIMENSIONAL HOMOLOGY OF A FINITELY PRESENTED GROUP # (Written by Irina Kholodna) # This file contains GAP V.4 functions for computing the module of # identities of a finite presentation of a finite group G, and for # computing a free ZG-resolution. # For all the functions: # by **the list of records representing an element zg in # ZG+...+ZG (k copies of ZG)** # we mean the constraction that becomes clear if we consider # the following example. # Let G has a presentation <x, y| x^2, y^2, (x*y)^2>. # The command Elements(G) gives the list [1, x, y, xy]. # Let zg be an element in the free module ZG+ZG, e.g. # zg=(x+y+2xy)e1+(x+3y)e2. # **The list of records representing this element** is: # [ [ rec(coeff:=1, word:=x), # rec(coeff:=1, word:=y), # rec(coeff:=2, word:=xy) ], # [ rec(coeff:=1, word:=x, # rec(coeff:=3, word:=y) ] ] #_____________________GLOBAL__VARIABLE__________________________ table:=[]; #--------------------------------------------------------------- #*************************************************************** Table:=function(G) #*************************************************************** # Given a finite group G, this function constracts # a square s x s matrix (where s = Size(G)) in the following way. # Let g_i = Elements(G)[i], and [n_1, n_2, ..., n_s] is the # list of integers representing an element z in ZG in the usual # way. Then the ith row [m_1, m_2, ..., m_s] of the matrix # is a list of integers such that [n_(m_1), n_(m_2), ..., n_(m_s)] # represents g_i*z. local #pG, product, permutation, index, i, z, pg; table:=[]; #pG:=Image(IsomorphismPermGroup(G)); for pg in Elements(pG) do product:=[]; for z in Elements(pG) do Add(product,Position(Elements(pG), pg*z)); od; permutation:=MappingPermListList(product,[1..Size(pG)]); index:=[]; for i in [1..Size(pG)] do Add(index,i^permutation); od; Add(table,index); od; end; #*************************************************************** NullList:=function(k) #*************************************************************** local i, list; list:=[]; for i in [1..k] do list[i]:=0; od; return list; end; #*************************************************************** LastFactor:=function(G,w) #*************************************************************** # Given a finitely presented group G and a word w # in terms of generators of G, this function returns # the extreme right letter in this word. local z, d; for z in FreeGeneratorsOfFpGroup(G) do d:=w*z^-1; if d<w then return z; else d:=w*z; if d<w then return z^-1; fi; fi; od; end; #*************************************************************** WordsToIntegers:=function(G,zg) #*************************************************************** # Given a finite group G and the list of records zg (IN FREE GENERATORS!) # representing an element in ZG, this # function returns the integer vector of length |G| # corresponding to this element. local #FpToPerm, #pG, position, l, d, i; #FpToPerm:=IsomorphismPermGroup(G); #pG:=Image(FpToPerm); l:=NullList(Size(pG)); for d in zg do d.word:=MappedWord(d.word,FreeGeneratorsOfFpGroup(G),GeneratorsOfGroup(G)); position:=Position(Elements(pG),d.word^FpToPerm); l[position]:=l[position]+d.coeff; od; return l; end; #*************************************************************** Der:=function(G,w,i) #*************************************************************** # Given a finitely presented group G, a word w in terms of # freee generators of F:=FreeGroupOfFpGroup(G) and integer number i # (0 < i < |FreeGeneratorsOfFpGroup(G)|+1), this function returns an # integer list representing (as an element in ZG) the Fox derivative # of w with respect to the generator of F whose position in the list # of generators is i. local F, d, rem, apply; F:=FreeGroupOfFpGroup(G); apply:=function(F,w,i,rem) local l, next, item; if Length(w)=1 then if w<>GeneratorsOfGroup(F)[i] and w<>GeneratorsOfGroup(F)[i]^-1 then return rec(coeff:=0, word:=[]); else if w=GeneratorsOfGroup(F)[i] then return rec(coeff:=1, word:=One(F)); else return rec(coeff:=-1, word:=w); fi; fi; fi; l:=LastFactor(F,w); w:=w*l^-1; item:=rec(coeff:=apply(F,l,i,rem).coeff, word:=w*apply(F,l,i,rem).word); if item.word<>[] then Add(rem, item); fi; next:=apply(F,w,i,rem); return next; end; rem:=[]; d:=apply(F,w,i,rem); if d.word<>[] then Add(rem,d); fi; return WordsToIntegers(G,rem); end; #*************************************************************** IntegersToWords:=function(G,v) #*************************************************************** # Given a finite group G and an integer vector v whose # length |v| is an integer multiple of the order of G, # this function constract the list of records representing # the corresponding (in the usual way) element in # ZG+...+ZG (|v|/|G| copies). local zg, k, l, i, j; k:=Length(v)/Size(G); zg:=[]; for i in [1..k] do zg[i]:=[]; l:=0; for j in [Size(G)*(i-1)+1..Size(G)*i] do l:=l+1; if v[j]<>0 then Add(zg[i], rec(coeff:=v[j], word:=EltsG[l])); fi; od; od; return zg; end; #*************************************************************** VectorPermutations:=function(G, v) #*************************************************************** # Given a finite group G and an integer # vector v whose length |v| is an integer multiple of the # order of G, this function returns a list of integer # vectors U={u_i | i=1,...,|G|} by permuting the coordinates # of v as follows. The vector v is identified in the usual # way with an element in the free module ZG+...+ZG # (|v|/|G| copies of ZG). The vector u_i represents the # element g_i*v in this module (where {g_i | i=1,...,|G|} # is the set of elements of G. local #pG, k, U, Index, i, j; #pG:=Image(IsomorphismPermGroup(G)); k:=Size(v)/Size(pG); U:=[]; for j in [1..Size(pG)] do Index:=StructuralCopy(table[j]); for i in [1..k-1] do Append(Index, table[j]+i*Size(pG)); od; Add(U,v{Index}); od; return U; end; #*************************************************************** GenerateAsZGModule:=function(G,V) #*************************************************************** local products, v; products:=[]; for v in V do Append(products, VectorPermutations(G, v)); od; return products; end; #*************************************************************** FoxMatrix:=function(G) #*************************************************************** # Given a finitely presented finite group G=<X|R>, the command # A:=FoxMat(G); # constructs the integer matrix A representing the homomorphism # delta: C2 --> C1, # where C2 is the direct sum ZG+ZG+...+ZG (|R| copies of ZG), # C1 is the direct sum ZG+ZG+...+ZG (|X| copies of ZG). local #pG, der, row, r, i; Table(G); der:=[]; for r in RelatorsOfFpGroup(G) do row:=[]; for i in [1..Length(FreeGeneratorsOfFpGroup(G))] do Append(row, Der(G, r, i)); od; Add(der,row); od; return GenerateAsZGModule(G,der); end; #*************************************************************** Is_ZLinearComb:=function(list, vector) #*************************************************************** # Given a list of integer vectors of equal length # and an integer vector of the same length, this # function returns true if the vector is Z-linear # combination of vectors in the list and false # otherwise. local B, list_and_vector, reduced_list, space, basis, coeff, normal_list_and_vector, normal_list; B:=false; if list<>[] then list_and_vector:=StructuralCopy(list); Add(list_and_vector,vector); if RankMat(list_and_vector) = RankMat(list) then normal_list_and_vector:=NormalFormIntMat(list_and_vector,2); normal_list:=NormalFormIntMat(list,2); if normal_list_and_vector.normal{[1..normal_list_and_vector.rank]}= normal_list.normal{[1..normal_list.rank]} then B:=true; fi; fi; fi; return B; end; #*************************************************************** MinimalModuleGenerators:=function(G, S) #*************************************************************** # Given a finitely presented finite group G=<X|R> and # a set S = {v_1,...,v_n} of integer vectors of equal length # k=|v_i| with k an integer multiply of |G|, the command # T:=MinimalModuleGenerators(G,S) # consracts a subset T of S as follows. # The vector v_i are identified with elements in the free # module ZG+...+ZG (k/|G| copies of ZG). Let A denote the # abelian group consisting of all finite integer linear # combinations of the elements in S. Let B denote the # ZG-module generated by the elements of T. Then T is # constructed to have the property A < B; moreover, no subset # of T has this property. local T, temp, G_temp, sublist_G_temp, except, index, i, j; temp:=[]; G_temp:=[]; for i in [1..Length(S)] do if not (S[i] in G_temp) then if not Is_ZLinearComb(G_temp,S[i]) then Add(temp, S[i]); Append(G_temp, VectorPermutations(G,S[i])); fi; fi; od; T:=[]; except:=[]; for i in [1..Length(temp)] do index:=[]; for j in [1..Length(temp)] do if not(j in except) and i<>j then Append(index, [Size(G)*(j-1)+1..Size(G)*j]); fi; od; sublist_G_temp:=G_temp{index}; if Is_ZLinearComb(sublist_G_temp, temp[i]) then Add(except,i); else Add(T, temp[i]); fi; od; return T; end; #*************************************************************** IdentityModuleZBasis:=function(G) #*************************************************************** # Given a finitely presented finite group G=<X|R>, the command # S:=IdentityModuleZBasis(G); # constract a set S of vectors that form a basis for the free # abelian group underlying the module of identities \pi. # Thus the vectors in S have length equal to |G|*|R|; # the implicit ordering on the element of G is that given by # the standart GAP command # Elements(G); # for the listing the elements of G. local A, V, v,nf; A:=FoxMatrix(G); nf:=NormalFormIntMat(A,6); V:=nf.rowtrans{[nf.rank+1..Length(A)]}; return LLLReducedBasis(V).basis; #return BaseIntMat(V); end; #*************************************************************** IdentityModuleGenerators:=function(G) #*************************************************************** # Given a finitely presented finite group G=<X|R>, the command # T:=IdentityModuleGenerators(G) # constracts a set T of integer vectors v_i of length # |v_i|=|G|*|R|. The set T represents a minimal set of # generators for the module of identities \pi. local m; m:= MinimalModuleGenerators(G, IdentityModuleZBasis(G)); return m; end; #*************************************************************** Resolution:=function(G,n) #*************************************************************** # Given a finitely presented finite group G=<X|R>, # and an integer number n>2, the command # RES:=Resolution(G,n); # construct a list RES such that for 2<i<n # RES[i] is a minimal set of generators # for the i-th term of a free ZG-resolution of Z. local res, matrix, nf, V, mgen, i; res:=[]; for i in [3..n] do if i=3 then res[i]:=IdentityModuleGenerators(G); else Table(G); matrix:=[]; for mgen in res[i-1] do Add(matrix, mgen); od; matrix:=GenerateAsZGModule(G,matrix); nf:=NormalFormIntMat(matrix,6); V:=nf.rowtrans{[nf.rank+1..Length(matrix)]}; V:=LLLReducedBasis(V).basis; #V:=BaseIntMat(V); res[i]:=MinimalModuleGenerators(G,V); fi; od; return res; end; ##################################################################### ########################END OF IRINA'S CODE########################## IrinasRes:=Resolution(G,n); FoxM:=FoxMatrix(G); ##################################################################### Dimension:=function(n); if n=0 then return 1; fi; if n=1 then return Length(GeneratorsOfGroup(G)); fi; if n= 2 then return Length(RelatorsOfFpGroup(G)); fi; if n>2 then return Length(IrinasRes[n]); fi; end; ##################################################################### ##################################################################### ExtendIrinasRes:=function() #This function will add the first local i, j, V; #two dimensions to Irinas Resolution. IrinasRes[1]:=[]; IrinasRes[2]:=[]; for i in [1..Dimension(2)] do V:=[]; for j in [1..Dimension(2)*OrderG] do if j=(1+(i-1)*OrderG) then V[j]:=-1; else V[j]:=0; fi; od; Append(IrinasRes[2], [TransposedMat(FoxM)*V]); od; for i in [1..Dimension(1)] do V:=[]; for j in [1..Dimension(1)*OrderG] do if j=(1+(i-1)*OrderG) then V[j]:=-1;else if j=Position(EltsG,GeneratorsOfGroup(G)[i])+(i-1)*Order(G) then V[j]:=1; else V[j]:=0; fi; fi; od; V:=List([1..Order(G)],x->V[x+(i-1)*Order(G)]); Append(IrinasRes[1],[V]); od; end; ##################################################################### ExtendIrinasRes(); ##################################################################### Int2Pair:=function(i,m) #m=Order(G), i=Position in a vector local j, x; j:=i mod m; x:=(i-j)/m; if j=0 then return [x,m]; else return [x+1,j]; fi; end; ##################################################################### ##################################################################### Boundary:=function(n,kk) local B, i, j, p, w, k, StandardForm; k:=AbsoluteValue(kk); B:=IrinasRes[n][k]; StandardForm:=[]; for i in [1..Length(B)] do if not B[i]=0 then for j in [1..AbsoluteValue(B[i])] do p:=Int2Pair(i,OrderG); Append(StandardForm, [ [SignInt(B[i])*p[1],AbsoluteValue(p[2])] ]); od; fi; od; if kk>0 then return StandardForm; else return NegateWord(StandardForm); fi; end; ##################################################################### return Objectify(HapResolution, rec( dimension:=Dimension, boundary:=Boundary, homotopy:=fail, elts:=EltsG, group:=G, properties:= [["type","resolution"], ["length",n], ["characteristic", Charact], ["reduced",true] ])); end); ##################################################################### ##################################################################### InstallGlobalFunction(ResolutionSmallGroup, function(G,n) local GG; if IsFpGroup(G) then return ResolutionSmallFpGroup(G,n); fi; GG:=Image(IsomorphismFpGroup(G)); GG:=SimplifiedFpGroup(GG); return ResolutionSmallFpGroup(GG,n); end); #####################################################################