Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place. Commercial Alternative to JupyterHub.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place. Commercial Alternative to JupyterHub.
| Download
GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
Project: cocalc-sagemath-dev-slelievre
Views: 520158############################################################################# #0 #F BarComplexEquivalence ## Input: A HAP resolution ## Output: An equivariant chain homotopy between the bar and the HAP complex ## InstallGlobalFunction(BarComplexEquivalence,function(R) local e,dim, BarResEqui,Phi,Psi,Equiv, CPhi,CPsi,CEquiv; e:=Identity(R!.group); dim:=R!.dimension; BarResEqui:=BarResolutionEquivalence(R); Phi:=BarResEqui!.phi; Psi:=BarResEqui!.psi; Equiv:=BarResEqui!.equiv; ###################################################################### #1 #F CPsi ## Input: A word w =[[m1,e_1],...[m_k,e_k]] with k:=R!.dimension(n) ## Output: The image of w under the map cpsi: cR_n->cB_n ## CPsi:=function(n,w) local Rew,x,cw; cw:=StructuralCopy(w); for x in cw do Add(x,1); od; Rew:=Psi(n,cw); for x in Rew do Remove(x,2); od; return Rew; end; ## ############### end of CPsi ########################################## ###################################################################### #1 #F CPhi ## Input: A word w =[[m_1,g_11,..,g_1n],...[m_k,g_k1,...,g_kn]] ## Output: The image of w under the map cphi: cB_n->cR_n ## CPhi:=function(n,w) local Zw,x,tmp,PhiZw,i,Rew; Zw:=[]; for x in w do tmp:=[x[1],e]; for i in [2..n+1] do Add(tmp,x[i]); od; Add(Zw,tmp); od; PhiZw:=Phi(n,Zw); Rew:= List([ 1..dim(n)],x->0); for tmp in PhiZw do i:=tmp[2]; Rew[i]:=Rew[i]+tmp[1]; od; return Rew; end; ## ############### end of CPhi ########################################## ###################################################################### #1 #F CEquiv ## Input: A word w =[[m_1,g_11,...,g_1n],...,[m_k,g_k1,...,g_kn]] ## Output: The image of w under the homotopy map cH_n: cB_n->cB_{n+1} ## CEquiv:=function(n,w) local Zw,x,i,tmp,Rew; Zw:=[]; for x in w do tmp:=[x[1],e]; for i in [2..n+1] do Add(tmp,x[i]); od; Add(Zw,tmp); od; Rew:=Equiv(n,Zw); for tmp in Rew do Remove(tmp,2); od; return Rew; end; ## ############### end of CEquiv ######################################## return rec( phi:=CPhi, psi:=CPsi, equiv:=CEquiv ); end); ## ################### end of BarComplexEquivalence ############################