Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place. Commercial Alternative to JupyterHub.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place. Commercial Alternative to JupyterHub.
| Download
GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
Project: cocalc-sagemath-dev-slelievre
Views: 521924############################################################################# #0 #O Homology ## Input: A crossed module XC and an integer number n ## Output: The integral homology H_n(XC,Z) ## InstallOtherMethod(Homology, "Homology of crossed modules", [IsHapCrossedModule,IsInt], function(XC,n) local C,D,N,K; C:=CatOneGroupByCrossedModule(XC); D:=QuasiIsomorph(C); N:=NerveOfCatOneGroup(D,n+1); K:=ChainComplexOfSimplicialGroup(N); return Homology(K,n); end); ############################################################################# #0 #O Homology ## Input: A cat-1-group C and an integer number n ## Output: The integral homology H_n(C,Z) ## InstallOtherMethod(Homology, "Homology of cat-1-groups", [IsHapCatOneGroup,IsInt], function(C,n) local D,N,K; D:=QuasiIsomorph(C); N:=NerveOfCatOneGroup(D,n+1); K:=ChainComplexOfSimplicialGroup(N); return Homology(K,n); end); ############################################################################# #0 #O Homology ## Input: A simplicial group G and an integer number n ## Output: The integral homology H_n(G,Z) ## InstallOtherMethod(Homology, "Homology of simplicial groups", [IsHapSimplicialGroup,IsInt], function(G,n) local K; K:=ChainComplexOfSimplicialGroup(G); return Homology(K,n); end);