Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
Project: cocalc-sagemath-dev-slelievre
Views: 418346#(C) Graham Ellis, 2005-2006 ##################################################################### TestHap:=function() local P, H0,H1,H2,H3,H4,H4a,H5,H6,H7,H8,H9,R,TR,Tensor,Tensor2, S5,S4,A,AS5,AS4,D,Bool,Poincare; H0:=GroupHomology(AlternatingGroup(5),2,2);; H1:=GroupHomology(SmallGroup(32,3),4,2);; H2:=GroupHomology(AbelianGroup([2,4,6]),4);; H3:=GroupHomology([[1,[2,3]],[2,[3,4]]],2);; R:=ResolutionNilpotentGroup(SmallGroup(64,135),5);; TR:=TensorWithIntegers(R);; H4:=Homology(TR,4);; H4a:=IntegralRingGenerators(R,4);; Tensor:=ThirdHomotopyGroupOfSuspensionB(SymmetricGroup(3));; Tensor2:=ThirdHomotopyGroupOfSuspensionB(SymmetricGroup(3),12);; P:=PresentationOfResolution(ResolutionAbelianGroup([0,2,4],3)).relators; P:=Length(P); R:=ResolutionAbelianGroup([0,0,0],5);; H6:=Homology(TensorWithIntegers(R),3); H7:=Cohomology(HomToIntegersModP(R,2),3); if LoadPackage("Polycyclic")=true then R:=ResolutionNilpotentGroup(HeisenbergPcpGroup(3),3); H5:=Homology(TensorWithIntegers(R),2); H5:=Length(H5); else H5:=14; fi; S5:=SymmetricGroup(5);SetName(S5,"S5"); S4:=SymmetricGroup(4);SetName(S4,"S4"); A:=SymmetricGroup(3);SetName(A,"S3"); AS5:=GroupHomomorphismByFunction(A,S5,x->x); AS4:=GroupHomomorphismByFunction(A,S4,x->x); D:=[S5,S4,[AS5,AS4]]; R:=ResolutionGraphOfGroups(D,3); H8:=Homology(TensorWithIntegers(R),2); H9:=Homology(ChevalleyEilenbergComplex(SimpleLieAlgebra("A",2,Integers),3),2); Poincare:= CoefficientsOfUnivariateRationalFunction(PoincareSeries(SmallGroup(64,134))); Bool:= H0=[2] and H1=[ 2, 2, 2, 2, 2 ] and H2=[ 2, 2, 2, 2, 2, 2, 2, 2 ] and H3=[ 0, 0 ] and H4=[ 2, 2, 2, 2, 2, 2, 2 ] and H4a=[ [ 0, 0, 1, 1, 0, -4, -4 ], [ 0, 0, 0, 0, 0, 1, 0 ], [ 0, 0, 0, 0, 0, 0, 1 ] ] and Tensor=[ 2 ] and Tensor2=[ 2 ] and P=5 and H5=14 and H6[1]=0 and H7=1 and H8=[2,2] and H9=[ 3, 3, 3, 3, 3, 3 ] and IsSuperperfect(PerfectGroup(120,1)) and Poincare=[ [ 1 ], [ 1, -3, 3, -1 ], 0 ]; if Bool then Print("\n\n HAP seems to be working fine. \n"); else Print("\n\n There are some problems with HAP. \n"); fi; end; #####################################################################