Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
Project: cocalc-sagemath-dev-slelievre
Views: 418346<?xml version="1.0" encoding="UTF-8"?>12<!-- This is an automatically generated file. -->3<Chapter Label="Chapter_Category_of_Matrices">4<Heading>Category of Matrices</Heading>56<Section Label="Chapter_Category_of_Matrices_Section_Constructors">7<Heading>Constructors</Heading>89<ManSection>10<Attr Arg="F" Name="MatrixCategory" Label="for IsFieldForHomalg"/>11<Returns>a category12</Returns>13<Description>14The argument is a homalg field <Math>F</Math>.15The output is the matrix category over <Math>F</Math>.16Objects in this category are non-negative integers.17Morphisms from a non-negative integer <Math>m</Math> to a non-negative integer <Math>n</Math> are given by18<Math>m \times n</Math> matrices.19</Description>20</ManSection>212223<ManSection>24<Oper Arg="S, M, R" Name="VectorSpaceMorphism" Label="for IsVectorSpaceObject, IsHomalgMatrix, IsVectorSpaceObject"/>25<Returns>a morphism in <Math>\mathrm{Hom}(S,R)</Math>26</Returns>27<Description>28The arguments are an object <Math>S</Math> in the category of matrices over a29homalg field <Math>F</Math>, a homalg matrix <Math>M</Math> over <Math>F</Math>, and another object <Math>R</Math>30in the category of matrices over <Math>F</Math>.31The output is the morphism <Math>S \rightarrow R</Math> in the category32of matrices over <Math>F</Math> whose underlying matrix is given by <Math>M</Math>.33</Description>34</ManSection>353637<ManSection>38<Oper Arg="d, F" Name="VectorSpaceObject" Label="for IsInt, IsFieldForHomalg"/>39<Returns>an object40</Returns>41<Description>42The arguments are a non-negative integer <Math>d</Math>43and a homalg field <Math>F</Math>.44The output is an object in the category of45matrices over <Math>F</Math> of dimension <Math>d</Math>.46</Description>47</ManSection>484950</Section>515253<Section Label="Chapter_Category_of_Matrices_Section_GAP_Categories">54<Heading>GAP Categories</Heading>5556<ManSection>57<Filt Arg="object" Name="IsVectorSpaceMorphism" Label="for IsCapCategoryMorphism and IsCellOfSkeletalCategory"/>58<Returns><C>true</C> or <C>false</C>59</Returns>60<Description>61The GAP category of morphisms in the category62of matrices of a field <Math>F</Math>.63</Description>64</ManSection>656667<ManSection>68<Filt Arg="object" Name="IsVectorSpaceObject" Label="for IsCapCategoryObject and IsCellOfSkeletalCategory"/>69<Returns><C>true</C> or <C>false</C>70</Returns>71<Description>72The GAP category of objects in the category73of matrices of a field <Math>F</Math>.74</Description>75</ManSection>767778</Section>798081<Section Label="Chapter_Category_of_Matrices_Section_Attributes">82<Heading>Attributes</Heading>8384<ManSection>85<Attr Arg="alpha" Name="UnderlyingFieldForHomalg" Label="for IsVectorSpaceMorphism"/>86<Returns>a homalg field87</Returns>88<Description>89The argument is a morphism <Math>\alpha</Math> in the matrix category over a90homalg field <Math>F</Math>.91The output is the field <Math>F</Math>.92</Description>93</ManSection>949596<ManSection>97<Attr Arg="alpha" Name="UnderlyingMatrix" Label="for IsVectorSpaceMorphism"/>98<Returns>a homalg matrix99</Returns>100<Description>101The argument is a morphism <Math>\alpha</Math> in a matrix category.102The output is its underlying matrix <Math>M</Math>.103</Description>104</ManSection>105106107<ManSection>108<Attr Arg="A" Name="UnderlyingFieldForHomalg" Label="for IsVectorSpaceObject"/>109<Returns>a homalg field110</Returns>111<Description>112The argument is an object <Math>A</Math> in the matrix category over a113homalg field <Math>F</Math>.114The output is the field <Math>F</Math>.115</Description>116</ManSection>117118119<ManSection>120<Attr Arg="A" Name="Dimension" Label="for IsVectorSpaceObject"/>121<Returns>a non-negative integer122</Returns>123<Description>124The argument is an object <Math>A</Math> in a matrix category.125The output is the dimension of <Math>A</Math>.126</Description>127</ManSection>128129130</Section>131132133134</Chapter>135136137138