Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
Project: cocalc-sagemath-dev-slelievre
Views: 4183461[1X2 [33X[0;0YExamples and Tests[133X[101X234[1X2.1 [33X[0;0YBasic Commands[133X[101X56[4X[32X Example [32X[104X7[4X[25Xgap>[125X [27XQ := HomalgFieldOfRationals();;[127X[104X8[4X[25Xgap>[125X [27Xa := VectorSpaceObject( 3, Q );[127X[104X9[4X[28X<A vector space object over Q of dimension 3>[128X[104X10[4X[25Xgap>[125X [27Xb := VectorSpaceObject( 4, Q );[127X[104X11[4X[28X<A vector space object over Q of dimension 4>[128X[104X12[4X[25Xgap>[125X [27Xhomalg_matrix := HomalgMatrix( [ [ 1, 0, 0, 0 ],[127X[104X13[4X[25X>[125X [27X [ 0, 1, 0, -1 ],[127X[104X14[4X[25X>[125X [27X [ -1, 0, 2, 1 ] ], 3, 4, Q );[127X[104X15[4X[28X<A 3 x 4 matrix over an internal ring>[128X[104X16[4X[25Xgap>[125X [27Xalpha := VectorSpaceMorphism( a, homalg_matrix, b );[127X[104X17[4X[28X<A morphism in Category of matrices over Q>[128X[104X18[4X[25Xgap>[125X [27XDisplay( alpha );[127X[104X19[4X[28X[ [ 1, 0, 0, 0 ],[128X[104X20[4X[28X [ 0, 1, 0, -1 ],[128X[104X21[4X[28X [ -1, 0, 2, 1 ] ][128X[104X22[4X[28X[128X[104X23[4X[28XA morphism in Category of matrices over Q[128X[104X24[4X[25Xgap>[125X [27Xhomalg_matrix := HomalgMatrix( [ [ 1, 1, 0, 0 ],[127X[104X25[4X[25X>[125X [27X [ 0, 1, 0, -1 ],[127X[104X26[4X[25X>[125X [27X [ -1, 0, 2, 1 ] ], 3, 4, Q );[127X[104X27[4X[28X<A 3 x 4 matrix over an internal ring>[128X[104X28[4X[25Xgap>[125X [27Xbeta := VectorSpaceMorphism( a, homalg_matrix, b );[127X[104X29[4X[28X<A morphism in Category of matrices over Q>[128X[104X30[4X[25Xgap>[125X [27XCokernelObject( alpha );[127X[104X31[4X[28X<A vector space object over Q of dimension 1>[128X[104X32[4X[25Xgap>[125X [27Xc := CokernelProjection( alpha );;[127X[104X33[4X[25Xgap>[125X [27XDisplay( c );[127X[104X34[4X[28X[ [ 0 ],[128X[104X35[4X[28X [ 1 ],[128X[104X36[4X[28X [ -1/2 ],[128X[104X37[4X[28X [ 1 ] ][128X[104X38[4X[28X[128X[104X39[4X[28XA split epimorphism in Category of matrices over Q[128X[104X40[4X[25Xgap>[125X [27Xgamma := UniversalMorphismIntoDirectSum( [ c, c ] );;[127X[104X41[4X[25Xgap>[125X [27XDisplay( gamma );[127X[104X42[4X[28X[ [ 0, 0 ],[128X[104X43[4X[28X [ 1, 1 ],[128X[104X44[4X[28X [ -1/2, -1/2 ],[128X[104X45[4X[28X [ 1, 1 ] ][128X[104X46[4X[28X[128X[104X47[4X[28XA morphism in Category of matrices over Q[128X[104X48[4X[25Xgap>[125X [27Xcolift := CokernelColift( alpha, gamma );;[127X[104X49[4X[25Xgap>[125X [27XIsEqualForMorphisms( PreCompose( c, colift ), gamma );[127X[104X50[4X[28Xtrue[128X[104X51[4X[25Xgap>[125X [27XFiberProduct( alpha, beta );[127X[104X52[4X[28X<A vector space object over Q of dimension 2>[128X[104X53[4X[25Xgap>[125X [27XF := FiberProduct( alpha, beta );[127X[104X54[4X[28X<A vector space object over Q of dimension 2>[128X[104X55[4X[25Xgap>[125X [27Xp1 := ProjectionInFactorOfFiberProduct( [ alpha, beta ], 1 );[127X[104X56[4X[28X<A morphism in Category of matrices over Q>[128X[104X57[4X[25Xgap>[125X [27XDisplay( PreCompose( p1, alpha ) );[127X[104X58[4X[28X[ [ 0, 1, 0, -1 ],[128X[104X59[4X[28X [ -1, 0, 2, 1 ] ][128X[104X60[4X[28X[128X[104X61[4X[28XA morphism in Category of matrices over Q[128X[104X62[4X[25Xgap>[125X [27XPushout( alpha, beta );[127X[104X63[4X[28X<A vector space object over Q of dimension 5>[128X[104X64[4X[25Xgap>[125X [27Xi1 := InjectionOfCofactorOfPushout( [ alpha, beta ], 1 );[127X[104X65[4X[28X<A morphism in Category of matrices over Q>[128X[104X66[4X[25Xgap>[125X [27Xi2 := InjectionOfCofactorOfPushout( [ alpha, beta ], 2 );[127X[104X67[4X[28X<A morphism in Category of matrices over Q>[128X[104X68[4X[25Xgap>[125X [27Xu := UniversalMorphismFromDirectSum( [ b, b ], [ i1, i2 ] );[127X[104X69[4X[28X<A morphism in Category of matrices over Q>[128X[104X70[4X[25Xgap>[125X [27XDisplay( u );[127X[104X71[4X[28X[ [ 0, 1, 1, 0, 0 ],[128X[104X72[4X[28X [ 1, 0, 1, 0, -1 ],[128X[104X73[4X[28X [ -1/2, 0, 1/2, 1, 1/2 ],[128X[104X74[4X[28X [ 1, 0, 0, 0, 0 ],[128X[104X75[4X[28X [ 0, 1, 0, 0, 0 ],[128X[104X76[4X[28X [ 0, 0, 1, 0, 0 ],[128X[104X77[4X[28X [ 0, 0, 0, 1, 0 ],[128X[104X78[4X[28X [ 0, 0, 0, 0, 1 ] ][128X[104X79[4X[28X[128X[104X80[4X[28XA morphism in Category of matrices over Q[128X[104X81[4X[25Xgap>[125X [27XKernelObjectFunctorial( u, IdentityMorphism( Source( u ) ), u ) = IdentityMorphism( VectorSpaceObject( 3, Q ) );[127X[104X82[4X[28Xtrue[128X[104X83[4X[25Xgap>[125X [27XIsZero( CokernelObjectFunctorial( u, IdentityMorphism( Range( u ) ), u ) );[127X[104X84[4X[28Xtrue[128X[104X85[4X[25Xgap>[125X [27XDirectProductFunctorial( [ u, u ] ) = DirectSumFunctorial( [ u, u ] );[127X[104X86[4X[28Xtrue[128X[104X87[4X[25Xgap>[125X [27XCoproductFunctorial( [ u, u ] ) = DirectSumFunctorial( [ u, u ] );[127X[104X88[4X[28Xtrue[128X[104X89[4X[25Xgap>[125X [27XIsOne( FiberProductFunctorial( [ [ u, IdentityMorphism( Source( u ) ), u ], [ u, IdentityMorphism( Source( u ) ) , u ] ] ) );[127X[104X90[4X[28Xtrue[128X[104X91[4X[25Xgap>[125X [27XIsOne( PushoutFunctorial( [ [ u, IdentityMorphism( Range( u ) ), u ], [ u, IdentityMorphism( Range( u ) ) , u ] ] ) );[127X[104X92[4X[28Xtrue[128X[104X93[4X[32X[104X94959697