Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
Project: cocalc-sagemath-dev-slelievre
Views: 418346## <#GAPDoc Label="Intersection"> ## <Section Label="Intersection"> ## <Heading>Testing the Intersection Formula</Heading> ## We want to check Serre's intersection formula ## <M>i(I_1, I_2; 0)=\sum_i(-1)^i length(Tor^{R_0}_i(R_0/I_1,R_0/I_2))</M> ## on an easy affine example. ## <Example> ## <![CDATA[ ## gap> LoadPackage( "RingsForHomalg" );; ## gap> R := HomalgFieldOfRationalsInSingular() * "w,x,y,z";; ## gap> LoadPackage( "LocalizeRingForHomalg" );; ## gap> R0 := LocalizePolynomialRingAtZeroWithMora( R );; ## gap> M1 := HomalgMatrix( "[\ ## > (w-x^2)*y, \ ## > (w-x^2)*z, \ ## > (x-w^2)*y, \ ## > (x-w^2)*z \ ## > ]", 4, 1, R );; ## gap> M2 := HomalgMatrix( "[\ ## > (w-x^2)-y, \ ## > (x-w^2)-z \ ## > ]", 2, 1, R );; ## gap> LoadPackage( "Modules" );; ## gap> RmodI1 := LeftPresentation( M1 );; ## gap> RmodI2 := LeftPresentation( M2 );; ## gap> T:=Tor( RmodI1, RmodI2 ); ## <A graded homology object consisting of 4 left modules at degrees [ 0 .. 3 ]> ## gap> List( ObjectsOfComplex( T ), AffineDegree ); ## [ 12, 4, 0, 0 ] ## ]]></Example> ## We read, that the intersection multiplicity is 12-4=8 globally. ## <Example><![CDATA[ ## gap> M10 := R0 * M1; ## <A 4 x 1 matrix over a local (Mora) ring> ## gap> M20 := R0 * M2; ## <A 2 x 1 matrix over a local (Mora) ring> ## gap> R0modI10 := LeftPresentation( M10 );; ## gap> R0modI20 := LeftPresentation( M20 );; ## gap> T0 := Tor( R0modI10, R0modI20 ); ## <A graded homology object consisting of 4 left modules at degrees [ 0 .. 3 ]> ## gap> List( ObjectsOfComplex( T0 ), AffineDegree ); ## [ 3, 1, 0, 0 ] ## ]]></Example> ## The intersection multiplicity at zero is 3-1=2. ## </Section> ## <#/GAPDoc> LoadPackage( "RingsForHomalg" );; R := HomalgFieldOfRationalsInSingular() * "w,x,y,z";; LoadPackage( "LocalizeRingForHomalg" );; R0 := LocalizePolynomialRingAtZeroWithMora( R );; M1 := HomalgMatrix( "[\ (w-x^2)*y, \ (w-x^2)*z, \ (x-w^2)*y, \ (x-w^2)*z \ ]", 4, 1, R );; M2 := HomalgMatrix( "[\ (w-x^2)-y, \ (x-w^2)-z \ ]", 2, 1, R );; LoadPackage( "Modules" );; RmodI1 := LeftPresentation( M1 );; RmodI2 := LeftPresentation( M2 );; T:=Tor( RmodI1, RmodI2 ); Assert( 0, List( ObjectsOfComplex( T ), AffineDegree ) = [ 12, 4, 0, 0 ] ); #We read, that the intersection multiplicity is 12-4=8 globally. M10 := R0 * M1; M20 := R0 * M2; R0modI10 := LeftPresentation( M10 );; R0modI20 := LeftPresentation( M20 );; T0 := Tor( R0modI10, R0modI20 ); Assert( 0, List( ObjectsOfComplex( T0 ), AffineDegree ) = [ 3, 1, 0, 0 ] ); #The intersection multiplicity at zero is 3-1=2.