Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
Project: cocalc-sagemath-dev-slelievre
Views: 418346## This is the second example shown in ## "An Axiomatic Setup for Algorithmic Homological Algebra and an Alternative Approach to Localization" ## in the version where Mora's algorithm fails LoadPackage( "RingsForHomalg" ); R := HomalgRingOfIntegersInSingular( 5 ) * "x,y,z,v,w";; LoadPackage( "LocalizeRingForHomalg" ); R0 := LocalizeAtZero( R );; S0 := LocalizePolynomialRingAtZeroWithMora( R );; i1 := HomalgMatrix( "[ \ x-z, \ y-w \ ]", 2, 1, R );; i2 := HomalgMatrix( "[ \ y^6*v^2*w-y^3*v*w^20+1, \ x*y^4*z^4*w-z^5*w^5+x^3*y*z^2-1 \ ]", 2, 1, R );; LoadPackage( "Modules" ); I := Intersect( LeftSubmodule( i1 ), LeftSubmodule( i2 ) );; I0 := R0 * I; OI0 := FactorObject( I0 ); j1 := HomalgMatrix( "[ \ x*z, \ x*w, \ y*z, \ y*w, \ v^2 \ ]", 5, 1, R );; j2 := HomalgMatrix( "[ \ y^6*v^2*w-y^3*v*w^2+1, \ x*y^4*z^4*w-z^5*w^5+x^3*y*z^2-1, \ x^7 \ ]", 3, 1, R );; J := Intersect( LeftSubmodule( j1 ), LeftSubmodule( j2 ) );; J0 := R0 * J;; OJ0 := FactorObject( J0 ); II := S0 * OI0; JJ := S0 * OJ0; TT := Tor( II , JJ ); List ( ObjectsOfComplex ( TT ) , AffineDegree );