Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
Project: cocalc-sagemath-dev-slelievre
Views: 418346LoadPackage("RingsForHomalg");; R := HomalgFieldOfRationalsInSingular() * "w,x,y,z";; LoadPackage("LocalizeRingForHomalg");; RMora := LocalizePolynomialRingAtZeroWithMora( R );; R0 := LocalizeAtZero( R );; R1 := LocalizeAt( R , "w-1,x-1,y,z" );; M1 := HomalgMatrix( "[\ (w-x^2)*y, \ (w-x^2)*z, \ (x-w^2)*y, \ (x-w^2)*z \ ]", 1, 4, R );; M2 := HomalgMatrix( "[\ (w-x^2)-y, \ (x-w^2)-z \ ]", 1, 2, R );; LoadPackage( "Modules" ); RmodI1 := RightPresentation( M1 );; RmodI2 := RightPresentation( M2 );; T:=Tor( RmodI1, RmodI2 ); Assert( 0, List( ObjectsOfComplex( T ), AffineDegree ) = [ 12, 4, 0, 0 ] ); #We read, that the intersection multiplicity is 12-4=8 globally. M10 := R0 * M1; M20 := R0 * M2; R0modI10 := RightPresentation( M10 );; R0modI20 := RightPresentation( M20 );; T0 := Tor( R0modI10, R0modI20 ); T0Mora := RMora * T0; Assert( 0, List( ObjectsOfComplex( T0Mora ), AffineDegree ) = [ 3, 1, 0, 0 ] ); #The intersection multiplicity at zero is 3-1=2. M11 := R1 * M1; M21 := R1 * M2; R1modI11 := RightPresentation( M11 );; R1modI21 := RightPresentation( M21 );; T1 := Tor( R1modI11, R1modI21 ); #The intersection multiplicity cannot be read off without affine transformation