CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutSign UpSign In

Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.

| Download

GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it

Views: 418346
1
<?xml version="1.0" encoding="UTF-8"?>
2
3
<!-- This is an automatically generated file. -->
4
<Chapter Label="Chapter_Module_Presentations">
5
<Heading>Module Presentations</Heading>
6
7
<Section Label="Chapter_Module_Presentations_Section_Functors">
8
<Heading>Functors</Heading>
9
10
<ManSection>
11
<Attr Arg="R" Name="FunctorStandardModuleLeft" Label="for IsHomalgRing"/>
12
<Returns>a functor
13
</Returns>
14
<Description>
15
The argument is a homalg ring <Math>R</Math>.
16
The output is a functor which takes
17
a left presentation as input and computes
18
its standard presentation.
19
</Description>
20
</ManSection>
21
22
23
<ManSection>
24
<Attr Arg="R" Name="FunctorStandardModuleRight" Label="for IsHomalgRing"/>
25
<Returns>a functor
26
</Returns>
27
<Description>
28
The argument is a homalg ring <Math>R</Math>.
29
The output is a functor which takes
30
a right presentation as input and computes
31
its standard presentation.
32
</Description>
33
</ManSection>
34
35
36
<ManSection>
37
<Attr Arg="R" Name="FunctorGetRidOfZeroGeneratorsLeft" Label="for IsHomalgRing"/>
38
<Returns>a functor
39
</Returns>
40
<Description>
41
The argument is a homalg ring <Math>R</Math>.
42
The output is a functor which takes
43
a left presentation as input and gets
44
rid of the zero generators.
45
</Description>
46
</ManSection>
47
48
49
<ManSection>
50
<Attr Arg="R" Name="FunctorGetRidOfZeroGeneratorsRight" Label="for IsHomalgRing"/>
51
<Returns>a functor
52
</Returns>
53
<Description>
54
The argument is a homalg ring <Math>R</Math>.
55
The output is a functor which takes
56
a right presentation as input and gets
57
rid of the zero generators.
58
</Description>
59
</ManSection>
60
61
62
<ManSection>
63
<Attr Arg="R" Name="FunctorLessGeneratorsLeft" Label="for IsHomalgRing"/>
64
<Returns>a functor
65
</Returns>
66
<Description>
67
The argument is a homalg ring <Math>R</Math>.
68
The output is functor which takes
69
a left presentation as input and computes
70
a presentation having less generators.
71
</Description>
72
</ManSection>
73
74
75
<ManSection>
76
<Attr Arg="R" Name="FunctorLessGeneratorsRight" Label="for IsHomalgRing"/>
77
<Returns>a functor
78
</Returns>
79
<Description>
80
The argument is a homalg ring <Math>R</Math>.
81
The output is functor which takes
82
a right presentation as input and computes
83
a presentation having less generators.
84
</Description>
85
</ManSection>
86
87
88
<ManSection>
89
<Attr Arg="R" Name="FunctorDualLeft" Label="for IsHomalgRing"/>
90
<Returns>a functor
91
</Returns>
92
<Description>
93
The argument is a homalg ring <Math>R</Math> that has an involution function.
94
The output is functor which takes
95
a left presentation <A>M</A> as input and computes
96
its Hom(M, R) as a left presentation.
97
</Description>
98
</ManSection>
99
100
101
<ManSection>
102
<Attr Arg="R" Name="FunctorDualRight" Label="for IsHomalgRing"/>
103
<Returns>a functor
104
</Returns>
105
<Description>
106
The argument is a homalg ring <Math>R</Math> that has an involution function.
107
The output is functor which takes
108
a right presentation <A>M</A> as input and computes
109
its Hom(M, R) as a right presentation.
110
</Description>
111
</ManSection>
112
113
114
<ManSection>
115
<Attr Arg="R" Name="FunctorDoubleDualLeft" Label="for IsHomalgRing"/>
116
<Returns>a functor
117
</Returns>
118
<Description>
119
The argument is a homalg ring <Math>R</Math> that has an involution function.
120
The output is functor which takes
121
a left presentation <A>M</A> as input and computes
122
its <A>Hom( Hom(M, R), R )</A> as a left presentation.
123
</Description>
124
</ManSection>
125
126
127
<ManSection>
128
<Attr Arg="R" Name="FunctorDoubleDualRight" Label="for IsHomalgRing"/>
129
<Returns>a functor
130
</Returns>
131
<Description>
132
The argument is a homalg ring <Math>R</Math> that has an involution function.
133
The output is functor which takes
134
a right presentation <A>M</A> as input and computes
135
its <A>Hom( Hom(M, R), R )</A> as a right presentation.
136
</Description>
137
</ManSection>
138
139
140
</Section>
141
142
143
<Section Label="Chapter_Module_Presentations_Section_GAP_Categories">
144
<Heading>GAP Categories</Heading>
145
146
<ManSection>
147
<Filt Arg="object" Name="IsLeftOrRightPresentationMorphism" Label="for IsCapCategoryMorphism"/>
148
<Returns><C>true</C> or <C>false</C>
149
</Returns>
150
<Description>
151
The GAP category of morphisms in the category
152
of left or right presentations.
153
</Description>
154
</ManSection>
155
156
157
<ManSection>
158
<Filt Arg="object" Name="IsLeftPresentationMorphism" Label="for IsLeftOrRightPresentationMorphism"/>
159
<Returns><C>true</C> or <C>false</C>
160
</Returns>
161
<Description>
162
The GAP category of morphisms in the category
163
of left presentations.
164
</Description>
165
</ManSection>
166
167
168
<ManSection>
169
<Filt Arg="object" Name="IsRightPresentationMorphism" Label="for IsLeftOrRightPresentationMorphism"/>
170
<Returns><C>true</C> or <C>false</C>
171
</Returns>
172
<Description>
173
The GAP category of morphisms in the category
174
of right presentations.
175
</Description>
176
</ManSection>
177
178
179
<ManSection>
180
<Filt Arg="object" Name="IsLeftOrRightPresentation" Label="for IsCapCategoryObject"/>
181
<Returns><C>true</C> or <C>false</C>
182
</Returns>
183
<Description>
184
The GAP category of objects in the category
185
of left presentations or right presentations.
186
</Description>
187
</ManSection>
188
189
190
<ManSection>
191
<Filt Arg="object" Name="IsLeftPresentation" Label="for IsLeftOrRightPresentation"/>
192
<Returns><C>true</C> or <C>false</C>
193
</Returns>
194
<Description>
195
The GAP category of objects in the category
196
of left presentations.
197
</Description>
198
</ManSection>
199
200
201
<ManSection>
202
<Filt Arg="object" Name="IsRightPresentation" Label="for IsLeftOrRightPresentation"/>
203
<Returns><C>true</C> or <C>false</C>
204
</Returns>
205
<Description>
206
The GAP category of objects in the category
207
of right presentations.
208
</Description>
209
</ManSection>
210
211
212
</Section>
213
214
215
<Section Label="Chapter_Module_Presentations_Section_Constructors">
216
<Heading>Constructors</Heading>
217
218
<ManSection>
219
<Oper Arg="A, M, B" Name="PresentationMorphism" Label="for IsLeftOrRightPresentation, IsHomalgMatrix, IsLeftOrRightPresentation"/>
220
<Returns>a morphism in <Math>\mathrm{Hom}(A,B)</Math>
221
</Returns>
222
<Description>
223
The arguments are an object <Math>A</Math>, a homalg matrix <Math>M</Math>,
224
and another object <Math>B</Math>.
225
<Math>A</Math> and <Math>B</Math> shall either both be objects in the category
226
of left presentations or both be objects in the category
227
of right presentations.
228
The output is a morphism <Math>A \rightarrow B</Math> in the
229
the category of left or right presentations whose
230
underlying matrix is given by <Math>M</Math>.
231
</Description>
232
</ManSection>
233
234
235
<ManSection>
236
<Attr Arg="m" Name="AsMorphismBetweenFreeLeftPresentations" Label="for IsHomalgMatrix"/>
237
<Returns>a morphism in <Math>\mathrm{Hom}(F^r,F^c)</Math>
238
</Returns>
239
<Description>
240
The argument is a homalg matrix <Math>m</Math>.
241
The output is a morphism <Math>F^r \rightarrow F^c</Math> in the
242
the category of left presentations whose
243
underlying matrix is given by <Math>m</Math>,
244
where <Math>F^r</Math> and <Math>F^c</Math> are free left presentations of
245
ranks given by the number of rows and columns of <Math>m</Math>.
246
</Description>
247
</ManSection>
248
249
250
<ManSection>
251
<Attr Arg="m" Name="AsMorphismBetweenFreeRightPresentations" Label="for IsHomalgMatrix"/>
252
<Returns>a morphism in <Math>\mathrm{Hom}(F^c,F^r)</Math>
253
</Returns>
254
<Description>
255
The argument is a homalg matrix <Math>m</Math>.
256
The output is a morphism <Math>F^c \rightarrow F^r</Math> in the
257
the category of right presentations whose
258
underlying matrix is given by <Math>m</Math>,
259
where <Math>F^r</Math> and <Math>F^c</Math> are free right presentations of
260
ranks given by the number of rows and columns of <Math>m</Math>.
261
</Description>
262
</ManSection>
263
264
265
<ManSection>
266
<Oper Arg="M" Name="AsLeftPresentation" Label="for IsHomalgMatrix"/>
267
<Returns>an object
268
</Returns>
269
<Description>
270
The argument is a homalg matrix <Math>M</Math> over a ring <Math>R</Math>.
271
The output is an object in the category of left presentations
272
over <Math>R</Math>. This object has <Math>M</Math> as its underlying matrix.
273
</Description>
274
</ManSection>
275
276
277
<ManSection>
278
<Oper Arg="M" Name="AsRightPresentation" Label="for IsHomalgMatrix"/>
279
<Returns>an object
280
</Returns>
281
<Description>
282
The argument is a homalg matrix <Math>M</Math> over a ring <Math>R</Math>.
283
The output is an object in the category of right presentations
284
over <Math>R</Math>. This object has <Math>M</Math> as its underlying matrix.
285
</Description>
286
</ManSection>
287
288
289
<ManSection>
290
<Func Arg="M, l" Name="AsLeftOrRightPresentation" />
291
<Returns>an object
292
</Returns>
293
<Description>
294
The arguments are a homalg matrix <Math>M</Math> and a boolean <Math>l</Math>.
295
If <Math>l</Math> is <C>true</C>, the output is an object in the category
296
of left presentations.
297
If <Math>l</Math> is <C>false</C>, the output is an object in the category
298
of right presentations.
299
In both cases, the underlying matrix of the result is <Math>M</Math>.
300
</Description>
301
</ManSection>
302
303
304
<ManSection>
305
<Oper Arg="r, R" Name="FreeLeftPresentation" Label="for IsInt, IsHomalgRing"/>
306
<Returns>an object
307
</Returns>
308
<Description>
309
The arguments are a non-negative integer <Math>r</Math>
310
and a homalg ring <Math>R</Math>.
311
The output is an object in the category of left presentations
312
over <Math>R</Math>. It is represented by the <Math>0 \times r</Math> matrix and
313
thus it is free of rank <Math>r</Math>.
314
</Description>
315
</ManSection>
316
317
318
<ManSection>
319
<Oper Arg="r, R" Name="FreeRightPresentation" Label="for IsInt, IsHomalgRing"/>
320
<Returns>an object
321
</Returns>
322
<Description>
323
The arguments are a non-negative integer <Math>r</Math>
324
and a homalg ring <Math>R</Math>.
325
The output is an object in the category of right presentations
326
over <Math>R</Math>. It is represented by the <Math>r \times 0</Math> matrix and
327
thus it is free of rank <Math>r</Math>.
328
</Description>
329
</ManSection>
330
331
332
<ManSection>
333
<Attr Arg="A" Name="UnderlyingMatrix" Label="for IsLeftOrRightPresentation"/>
334
<Returns>a homalg matrix
335
</Returns>
336
<Description>
337
The argument is an object <Math>A</Math> in the category of left or right presentations
338
over a homalg ring <Math>R</Math>.
339
The output is the underlying matrix which presents <Math>A</Math>.
340
</Description>
341
</ManSection>
342
343
344
<ManSection>
345
<Attr Arg="A" Name="UnderlyingHomalgRing" Label="for IsLeftOrRightPresentation"/>
346
<Returns>a homalg ring
347
</Returns>
348
<Description>
349
The argument is an object <Math>A</Math> in the category of left or right presentations
350
over a homalg ring <Math>R</Math>.
351
The output is <Math>R</Math>.
352
</Description>
353
</ManSection>
354
355
356
<ManSection>
357
<Attr Arg="A" Name="Annihilator" Label="for IsLeftOrRightPresentation"/>
358
<Returns>a morphism in <Math>\mathrm{Hom}(I, F)</Math>
359
</Returns>
360
<Description>
361
The argument is an object <Math>A</Math> in the category of left or right presentations.
362
The output is the embedding of the annihilator <Math>I</Math> of <Math>A</Math>
363
into the free module <Math>F</Math> of rank <Math>1</Math>.
364
In particular, the annihilator itself is seen as a left or right presentation.
365
</Description>
366
</ManSection>
367
368
369
<ManSection>
370
<Attr Arg="R" Name="LeftPresentations" Label="for IsHomalgRing"/>
371
<Returns>a category
372
</Returns>
373
<Description>
374
The argument is a homalg ring <Math>R</Math>.
375
The output is the category of free left presentations
376
over <Math>R</Math>.
377
</Description>
378
</ManSection>
379
380
381
<ManSection>
382
<Attr Arg="R" Name="RightPresentations" Label="for IsHomalgRing"/>
383
<Returns>a category
384
</Returns>
385
<Description>
386
The argument is a homalg ring <Math>R</Math>.
387
The output is the category of free right presentations
388
over <Math>R</Math>.
389
</Description>
390
</ManSection>
391
392
393
</Section>
394
395
396
<Section Label="Chapter_Module_Presentations_Section_Attributes">
397
<Heading>Attributes</Heading>
398
399
<ManSection>
400
<Attr Arg="R" Name="UnderlyingHomalgRing" Label="for IsLeftOrRightPresentationMorphism"/>
401
<Returns>a homalg ring
402
</Returns>
403
<Description>
404
The argument is a morphism <Math>\alpha</Math> in the category
405
of left or right presentations over a homalg ring <Math>R</Math>.
406
The output is <Math>R</Math>.
407
</Description>
408
</ManSection>
409
410
411
<ManSection>
412
<Attr Arg="alpha" Name="UnderlyingMatrix" Label="for IsLeftOrRightPresentationMorphism"/>
413
<Returns>a homalg matrix
414
</Returns>
415
<Description>
416
The argument is a morphism <Math>\alpha</Math> in the category
417
of left or right presentations.
418
The output is its underlying homalg matrix.
419
</Description>
420
</ManSection>
421
422
423
</Section>
424
425
426
<Section Label="Chapter_Module_Presentations_Section_Non-Categorical_Operations">
427
<Heading>Non-Categorical Operations</Heading>
428
429
<ManSection>
430
<Oper Arg="A, i" Name="StandardGeneratorMorphism" Label="for IsLeftOrRightPresentation, IsInt"/>
431
<Returns>a morphism in <Math>\mathrm{Hom}(F, A)</Math>
432
</Returns>
433
<Description>
434
The argument is an object <Math>A</Math> in the category of
435
left or right presentations over a homalg ring <Math>R</Math>
436
with underlying matrix <Math>M</Math>
437
and an integer <Math>i</Math>.
438
The output is a morphism <Math>F \rightarrow A</Math> given
439
by the <Math>i</Math>-th row or column of <Math>M</Math>, where <Math>F</Math>
440
is a free left or right presentation of rank <Math>1</Math>.
441
</Description>
442
</ManSection>
443
444
445
<ManSection>
446
<Attr Arg="A" Name="CoverByFreeModule" Label="for IsLeftOrRightPresentation"/>
447
<Returns>a morphism in <Math>\mathrm{Hom}(F,A)</Math>
448
</Returns>
449
<Description>
450
The argument is an object <Math>A</Math> in the category of
451
left or right presentations.
452
The output is a morphism from a free module <Math>F</Math>
453
to <Math>A</Math>, which maps the standard generators of
454
the free module to the generators of <Math>A</Math>.
455
</Description>
456
</ManSection>
457
458
459
</Section>
460
461
462
<Section Label="Chapter_Module_Presentations_Section_Natural_Transformations">
463
<Heading>Natural Transformations</Heading>
464
465
<ManSection>
466
<Attr Arg="R" Name="NaturalIsomorphismFromIdentityToStandardModuleLeft" Label="for IsHomalgRing"/>
467
<Returns>a natural transformation <Math>\mathrm{Id} \rightarrow \mathrm{StandardModuleLeft}</Math>
468
</Returns>
469
<Description>
470
The argument is a homalg ring <Math>R</Math>.
471
The output is the natural isomorphism from the identity functor
472
to the left standard module functor.
473
</Description>
474
</ManSection>
475
476
477
<ManSection>
478
<Attr Arg="R" Name="NaturalIsomorphismFromIdentityToStandardModuleRight" Label="for IsHomalgRing"/>
479
<Returns>a natural transformation <Math>\mathrm{Id} \rightarrow \mathrm{StandardModuleRight}</Math>
480
</Returns>
481
<Description>
482
The argument is a homalg ring <Math>R</Math>.
483
The output is the natural isomorphism from the identity functor
484
to the right standard module functor.
485
</Description>
486
</ManSection>
487
488
489
<ManSection>
490
<Attr Arg="R" Name="NaturalIsomorphismFromIdentityToGetRidOfZeroGeneratorsLeft" Label="for IsHomalgRing"/>
491
<Returns>a natural transformation <Math>\mathrm{Id} \rightarrow \mathrm{GetRidOfZeroGeneratorsLeft}</Math>
492
</Returns>
493
<Description>
494
The argument is a homalg ring <Math>R</Math>.
495
The output is the natural isomorphism from the identity functor
496
to the functor that gets rid of zero generators of left modules.
497
</Description>
498
</ManSection>
499
500
501
<ManSection>
502
<Attr Arg="R" Name="NaturalIsomorphismFromIdentityToGetRidOfZeroGeneratorsRight" Label="for IsHomalgRing"/>
503
<Returns>a natural transformation <Math>\mathrm{Id} \rightarrow \mathrm{GetRidOfZeroGeneratorsRight}</Math>
504
</Returns>
505
<Description>
506
The argument is a homalg ring <Math>R</Math>.
507
The output is the natural isomorphism from the identity functor
508
to the functor that gets rid of zero generators of right modules.
509
</Description>
510
</ManSection>
511
512
513
<ManSection>
514
<Attr Arg="R" Name="NaturalIsomorphismFromIdentityToLessGeneratorsLeft" Label="for IsHomalgRing"/>
515
<Returns>a natural transformation <Math>\mathrm{Id} \rightarrow \mathrm{LessGeneratorsLeft}</Math>
516
</Returns>
517
<Description>
518
The argument is a homalg ring <Math>R</Math>.
519
The output is the natural morphism from the identity functor
520
to the left less generators functor.
521
</Description>
522
</ManSection>
523
524
525
<ManSection>
526
<Attr Arg="R" Name="NaturalIsomorphismFromIdentityToLessGeneratorsRight" Label="for IsHomalgRing"/>
527
<Returns>a natural transformation <Math>\mathrm{Id} \rightarrow \mathrm{LessGeneratorsRight}</Math>
528
</Returns>
529
<Description>
530
The argument is a homalg ring <Math>R</Math>.
531
The output is the natural morphism from the identity functor
532
to the right less generator functor.
533
</Description>
534
</ManSection>
535
536
537
<ManSection>
538
<Attr Arg="R" Name="NaturalTransformationFromIdentityToDoubleDualLeft" Label="for IsHomalgRing"/>
539
<Returns>a natural transformation <Math>\mathrm{Id} \rightarrow \mathrm{FunctorDoubleDualLeft}</Math>
540
</Returns>
541
<Description>
542
The argument is a homalg ring <Math>R</Math>.
543
The output is the natural morphism from the identity functor
544
to the double dual functor in left Presentations category.
545
</Description>
546
</ManSection>
547
548
549
<ManSection>
550
<Attr Arg="R" Name="NaturalTransformationFromIdentityToDoubleDualRight" Label="for IsHomalgRing"/>
551
<Returns>a natural transformation <Math>\mathrm{Id} \rightarrow \mathrm{FunctorDoubleDualRight}</Math>
552
</Returns>
553
<Description>
554
The argument is a homalg ring <Math>R</Math>.
555
The output is the natural morphism from the identity functor
556
to the double dual functor in right Presentations category.
557
</Description>
558
</ManSection>
559
560
561
</Section>
562
563
564
</Chapter>
565
566
567