Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
Project: cocalc-sagemath-dev-slelievre
Views: 4183461[1X1 [33X[0;0YModule Presentations[133X[101X234[1X1.1 [33X[0;0YFunctors[133X[101X56[1X1.1-1 FunctorStandardModuleLeft[101X78[29X[2XFunctorStandardModuleLeft[102X( [3XR[103X ) [32X attribute9[6XReturns:[106X [33X[0;10Ya functor[133X1011[33X[0;0YThe argument is a homalg ring [23XR[123X. The output is a functor which takes a left12presentation as input and computes its standard presentation.[133X1314[1X1.1-2 FunctorStandardModuleRight[101X1516[29X[2XFunctorStandardModuleRight[102X( [3XR[103X ) [32X attribute17[6XReturns:[106X [33X[0;10Ya functor[133X1819[33X[0;0YThe argument is a homalg ring [23XR[123X. The output is a functor which takes a right20presentation as input and computes its standard presentation.[133X2122[1X1.1-3 FunctorGetRidOfZeroGeneratorsLeft[101X2324[29X[2XFunctorGetRidOfZeroGeneratorsLeft[102X( [3XR[103X ) [32X attribute25[6XReturns:[106X [33X[0;10Ya functor[133X2627[33X[0;0YThe argument is a homalg ring [23XR[123X. The output is a functor which takes a left28presentation as input and gets rid of the zero generators.[133X2930[1X1.1-4 FunctorGetRidOfZeroGeneratorsRight[101X3132[29X[2XFunctorGetRidOfZeroGeneratorsRight[102X( [3XR[103X ) [32X attribute33[6XReturns:[106X [33X[0;10Ya functor[133X3435[33X[0;0YThe argument is a homalg ring [23XR[123X. The output is a functor which takes a right36presentation as input and gets rid of the zero generators.[133X3738[1X1.1-5 FunctorLessGeneratorsLeft[101X3940[29X[2XFunctorLessGeneratorsLeft[102X( [3XR[103X ) [32X attribute41[6XReturns:[106X [33X[0;10Ya functor[133X4243[33X[0;0YThe argument is a homalg ring [23XR[123X. The output is functor which takes a left44presentation as input and computes a presentation having less generators.[133X4546[1X1.1-6 FunctorLessGeneratorsRight[101X4748[29X[2XFunctorLessGeneratorsRight[102X( [3XR[103X ) [32X attribute49[6XReturns:[106X [33X[0;10Ya functor[133X5051[33X[0;0YThe argument is a homalg ring [23XR[123X. The output is functor which takes a right52presentation as input and computes a presentation having less generators.[133X5354[1X1.1-7 FunctorDualLeft[101X5556[29X[2XFunctorDualLeft[102X( [3XR[103X ) [32X attribute57[6XReturns:[106X [33X[0;10Ya functor[133X5859[33X[0;0YThe argument is a homalg ring [23XR[123X that has an involution function. The output60is functor which takes a left presentation [3XM[103X as input and computes its61Hom(M, R) as a left presentation.[133X6263[1X1.1-8 FunctorDualRight[101X6465[29X[2XFunctorDualRight[102X( [3XR[103X ) [32X attribute66[6XReturns:[106X [33X[0;10Ya functor[133X6768[33X[0;0YThe argument is a homalg ring [23XR[123X that has an involution function. The output69is functor which takes a right presentation [3XM[103X as input and computes its70Hom(M, R) as a right presentation.[133X7172[1X1.1-9 FunctorDoubleDualLeft[101X7374[29X[2XFunctorDoubleDualLeft[102X( [3XR[103X ) [32X attribute75[6XReturns:[106X [33X[0;10Ya functor[133X7677[33X[0;0YThe argument is a homalg ring [23XR[123X that has an involution function. The output78is functor which takes a left presentation [3XM[103X as input and computes its [3XHom(79Hom(M, R), R )[103X as a left presentation.[133X8081[1X1.1-10 FunctorDoubleDualRight[101X8283[29X[2XFunctorDoubleDualRight[102X( [3XR[103X ) [32X attribute84[6XReturns:[106X [33X[0;10Ya functor[133X8586[33X[0;0YThe argument is a homalg ring [23XR[123X that has an involution function. The output87is functor which takes a right presentation [3XM[103X as input and computes its [3XHom(88Hom(M, R), R )[103X as a right presentation.[133X899091[1X1.2 [33X[0;0YGAP Categories[133X[101X9293[1X1.2-1 IsLeftOrRightPresentationMorphism[101X9495[29X[2XIsLeftOrRightPresentationMorphism[102X( [3Xobject[103X ) [32X filter96[6XReturns:[106X [33X[0;10Y[10Xtrue[110X or [10Xfalse[110X[133X9798[33X[0;0YThe GAP category of morphisms in the category of left or right99presentations.[133X100101[1X1.2-2 IsLeftPresentationMorphism[101X102103[29X[2XIsLeftPresentationMorphism[102X( [3Xobject[103X ) [32X filter104[6XReturns:[106X [33X[0;10Y[10Xtrue[110X or [10Xfalse[110X[133X105106[33X[0;0YThe GAP category of morphisms in the category of left presentations.[133X107108[1X1.2-3 IsRightPresentationMorphism[101X109110[29X[2XIsRightPresentationMorphism[102X( [3Xobject[103X ) [32X filter111[6XReturns:[106X [33X[0;10Y[10Xtrue[110X or [10Xfalse[110X[133X112113[33X[0;0YThe GAP category of morphisms in the category of right presentations.[133X114115[1X1.2-4 IsLeftOrRightPresentation[101X116117[29X[2XIsLeftOrRightPresentation[102X( [3Xobject[103X ) [32X filter118[6XReturns:[106X [33X[0;10Y[10Xtrue[110X or [10Xfalse[110X[133X119120[33X[0;0YThe GAP category of objects in the category of left presentations or right121presentations.[133X122123[1X1.2-5 IsLeftPresentation[101X124125[29X[2XIsLeftPresentation[102X( [3Xobject[103X ) [32X filter126[6XReturns:[106X [33X[0;10Y[10Xtrue[110X or [10Xfalse[110X[133X127128[33X[0;0YThe GAP category of objects in the category of left presentations.[133X129130[1X1.2-6 IsRightPresentation[101X131132[29X[2XIsRightPresentation[102X( [3Xobject[103X ) [32X filter133[6XReturns:[106X [33X[0;10Y[10Xtrue[110X or [10Xfalse[110X[133X134135[33X[0;0YThe GAP category of objects in the category of right presentations.[133X136137138[1X1.3 [33X[0;0YConstructors[133X[101X139140[1X1.3-1 PresentationMorphism[101X141142[29X[2XPresentationMorphism[102X( [3XA[103X, [3XM[103X, [3XB[103X ) [32X operation143[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}(A,B)[123X[133X144145[33X[0;0YThe arguments are an object [23XA[123X, a homalg matrix [23XM[123X, and another object [23XB[123X. [23XA[123X146and [23XB[123X shall either both be objects in the category of left presentations or147both be objects in the category of right presentations. The output is a148morphism [23XA \rightarrow B[123X in the the category of left or right presentations149whose underlying matrix is given by [23XM[123X.[133X150151[1X1.3-2 AsMorphismBetweenFreeLeftPresentations[101X152153[29X[2XAsMorphismBetweenFreeLeftPresentations[102X( [3Xm[103X ) [32X attribute154[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}(F^r,F^c)[123X[133X155156[33X[0;0YThe argument is a homalg matrix [23Xm[123X. The output is a morphism [23XF^r \rightarrow157F^c[123X in the the category of left presentations whose underlying matrix is158given by [23Xm[123X, where [23XF^r[123X and [23XF^c[123X are free left presentations of ranks given by159the number of rows and columns of [23Xm[123X.[133X160161[1X1.3-3 AsMorphismBetweenFreeRightPresentations[101X162163[29X[2XAsMorphismBetweenFreeRightPresentations[102X( [3Xm[103X ) [32X attribute164[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}(F^c,F^r)[123X[133X165166[33X[0;0YThe argument is a homalg matrix [23Xm[123X. The output is a morphism [23XF^c \rightarrow167F^r[123X in the the category of right presentations whose underlying matrix is168given by [23Xm[123X, where [23XF^r[123X and [23XF^c[123X are free right presentations of ranks given by169the number of rows and columns of [23Xm[123X.[133X170171[1X1.3-4 AsLeftPresentation[101X172173[29X[2XAsLeftPresentation[102X( [3XM[103X ) [32X operation174[6XReturns:[106X [33X[0;10Yan object[133X175176[33X[0;0YThe argument is a homalg matrix [23XM[123X over a ring [23XR[123X. The output is an object in177the category of left presentations over [23XR[123X. This object has [23XM[123X as its178underlying matrix.[133X179180[1X1.3-5 AsRightPresentation[101X181182[29X[2XAsRightPresentation[102X( [3XM[103X ) [32X operation183[6XReturns:[106X [33X[0;10Yan object[133X184185[33X[0;0YThe argument is a homalg matrix [23XM[123X over a ring [23XR[123X. The output is an object in186the category of right presentations over [23XR[123X. This object has [23XM[123X as its187underlying matrix.[133X188189[1X1.3-6 AsLeftOrRightPresentation[101X190191[29X[2XAsLeftOrRightPresentation[102X( [3XM[103X, [3Xl[103X ) [32X function192[6XReturns:[106X [33X[0;10Yan object[133X193194[33X[0;0YThe arguments are a homalg matrix [23XM[123X and a boolean [23Xl[123X. If [23Xl[123X is [10Xtrue[110X, the195output is an object in the category of left presentations. If [23Xl[123X is [10Xfalse[110X,196the output is an object in the category of right presentations. In both197cases, the underlying matrix of the result is [23XM[123X.[133X198199[1X1.3-7 FreeLeftPresentation[101X200201[29X[2XFreeLeftPresentation[102X( [3Xr[103X, [3XR[103X ) [32X operation202[6XReturns:[106X [33X[0;10Yan object[133X203204[33X[0;0YThe arguments are a non-negative integer [23Xr[123X and a homalg ring [23XR[123X. The output205is an object in the category of left presentations over [23XR[123X. It is represented206by the [23X0 \times r[123X matrix and thus it is free of rank [23Xr[123X.[133X207208[1X1.3-8 FreeRightPresentation[101X209210[29X[2XFreeRightPresentation[102X( [3Xr[103X, [3XR[103X ) [32X operation211[6XReturns:[106X [33X[0;10Yan object[133X212213[33X[0;0YThe arguments are a non-negative integer [23Xr[123X and a homalg ring [23XR[123X. The output214is an object in the category of right presentations over [23XR[123X. It is215represented by the [23Xr \times 0[123X matrix and thus it is free of rank [23Xr[123X.[133X216217[1X1.3-9 UnderlyingMatrix[101X218219[29X[2XUnderlyingMatrix[102X( [3XA[103X ) [32X attribute220[6XReturns:[106X [33X[0;10Ya homalg matrix[133X221222[33X[0;0YThe argument is an object [23XA[123X in the category of left or right presentations223over a homalg ring [23XR[123X. The output is the underlying matrix which presents [23XA[123X.[133X224225[1X1.3-10 UnderlyingHomalgRing[101X226227[29X[2XUnderlyingHomalgRing[102X( [3XA[103X ) [32X attribute228[6XReturns:[106X [33X[0;10Ya homalg ring[133X229230[33X[0;0YThe argument is an object [23XA[123X in the category of left or right presentations231over a homalg ring [23XR[123X. The output is [23XR[123X.[133X232233[1X1.3-11 Annihilator[101X234235[29X[2XAnnihilator[102X( [3XA[103X ) [32X attribute236[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}(I, F)[123X[133X237238[33X[0;0YThe argument is an object [23XA[123X in the category of left or right presentations.239The output is the embedding of the annihilator [23XI[123X of [23XA[123X into the free module [23XF[123X240of rank [23X1[123X. In particular, the annihilator itself is seen as a left or right241presentation.[133X242243[1X1.3-12 LeftPresentations[101X244245[29X[2XLeftPresentations[102X( [3XR[103X ) [32X attribute246[6XReturns:[106X [33X[0;10Ya category[133X247248[33X[0;0YThe argument is a homalg ring [23XR[123X. The output is the category of free left249presentations over [23XR[123X.[133X250251[1X1.3-13 RightPresentations[101X252253[29X[2XRightPresentations[102X( [3XR[103X ) [32X attribute254[6XReturns:[106X [33X[0;10Ya category[133X255256[33X[0;0YThe argument is a homalg ring [23XR[123X. The output is the category of free right257presentations over [23XR[123X.[133X258259260[1X1.4 [33X[0;0YAttributes[133X[101X261262[1X1.4-1 UnderlyingHomalgRing[101X263264[29X[2XUnderlyingHomalgRing[102X( [3XR[103X ) [32X attribute265[6XReturns:[106X [33X[0;10Ya homalg ring[133X266267[33X[0;0YThe argument is a morphism [23X\alpha[123X in the category of left or right268presentations over a homalg ring [23XR[123X. The output is [23XR[123X.[133X269270[1X1.4-2 UnderlyingMatrix[101X271272[29X[2XUnderlyingMatrix[102X( [3Xalpha[103X ) [32X attribute273[6XReturns:[106X [33X[0;10Ya homalg matrix[133X274275[33X[0;0YThe argument is a morphism [23X\alpha[123X in the category of left or right276presentations. The output is its underlying homalg matrix.[133X277278279[1X1.5 [33X[0;0YNon-Categorical Operations[133X[101X280281[1X1.5-1 StandardGeneratorMorphism[101X282283[29X[2XStandardGeneratorMorphism[102X( [3XA[103X, [3Xi[103X ) [32X operation284[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}(F, A)[123X[133X285286[33X[0;0YThe argument is an object [23XA[123X in the category of left or right presentations287over a homalg ring [23XR[123X with underlying matrix [23XM[123X and an integer [23Xi[123X. The output288is a morphism [23XF \rightarrow A[123X given by the [23Xi[123X-th row or column of [23XM[123X, where [23XF[123X289is a free left or right presentation of rank [23X1[123X.[133X290291[1X1.5-2 CoverByFreeModule[101X292293[29X[2XCoverByFreeModule[102X( [3XA[103X ) [32X attribute294[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}(F,A)[123X[133X295296[33X[0;0YThe argument is an object [23XA[123X in the category of left or right presentations.297The output is a morphism from a free module [23XF[123X to [23XA[123X, which maps the standard298generators of the free module to the generators of [23XA[123X.[133X299300301[1X1.6 [33X[0;0YNatural Transformations[133X[101X302303[1X1.6-1 NaturalIsomorphismFromIdentityToStandardModuleLeft[101X304305[29X[2XNaturalIsomorphismFromIdentityToStandardModuleLeft[102X( [3XR[103X ) [32X attribute306[6XReturns:[106X [33X[0;10Ya natural transformation [23X\mathrm{Id} \rightarrow307\mathrm{StandardModuleLeft}[123X[133X308309[33X[0;0YThe argument is a homalg ring [23XR[123X. The output is the natural isomorphism from310the identity functor to the left standard module functor.[133X311312[1X1.6-2 NaturalIsomorphismFromIdentityToStandardModuleRight[101X313314[29X[2XNaturalIsomorphismFromIdentityToStandardModuleRight[102X( [3XR[103X ) [32X attribute315[6XReturns:[106X [33X[0;10Ya natural transformation [23X\mathrm{Id} \rightarrow316\mathrm{StandardModuleRight}[123X[133X317318[33X[0;0YThe argument is a homalg ring [23XR[123X. The output is the natural isomorphism from319the identity functor to the right standard module functor.[133X320321[1X1.6-3 NaturalIsomorphismFromIdentityToGetRidOfZeroGeneratorsLeft[101X322323[29X[2XNaturalIsomorphismFromIdentityToGetRidOfZeroGeneratorsLeft[102X( [3XR[103X ) [32X attribute324[6XReturns:[106X [33X[0;10Ya natural transformation [23X\mathrm{Id} \rightarrow325\mathrm{GetRidOfZeroGeneratorsLeft}[123X[133X326327[33X[0;0YThe argument is a homalg ring [23XR[123X. The output is the natural isomorphism from328the identity functor to the functor that gets rid of zero generators of left329modules.[133X330331[1X1.6-4 NaturalIsomorphismFromIdentityToGetRidOfZeroGeneratorsRight[101X332333[29X[2XNaturalIsomorphismFromIdentityToGetRidOfZeroGeneratorsRight[102X( [3XR[103X ) [32X attribute334[6XReturns:[106X [33X[0;10Ya natural transformation [23X\mathrm{Id} \rightarrow335\mathrm{GetRidOfZeroGeneratorsRight}[123X[133X336337[33X[0;0YThe argument is a homalg ring [23XR[123X. The output is the natural isomorphism from338the identity functor to the functor that gets rid of zero generators of339right modules.[133X340341[1X1.6-5 NaturalIsomorphismFromIdentityToLessGeneratorsLeft[101X342343[29X[2XNaturalIsomorphismFromIdentityToLessGeneratorsLeft[102X( [3XR[103X ) [32X attribute344[6XReturns:[106X [33X[0;10Ya natural transformation [23X\mathrm{Id} \rightarrow345\mathrm{LessGeneratorsLeft}[123X[133X346347[33X[0;0YThe argument is a homalg ring [23XR[123X. The output is the natural morphism from the348identity functor to the left less generators functor.[133X349350[1X1.6-6 NaturalIsomorphismFromIdentityToLessGeneratorsRight[101X351352[29X[2XNaturalIsomorphismFromIdentityToLessGeneratorsRight[102X( [3XR[103X ) [32X attribute353[6XReturns:[106X [33X[0;10Ya natural transformation [23X\mathrm{Id} \rightarrow354\mathrm{LessGeneratorsRight}[123X[133X355356[33X[0;0YThe argument is a homalg ring [23XR[123X. The output is the natural morphism from the357identity functor to the right less generator functor.[133X358359[1X1.6-7 NaturalTransformationFromIdentityToDoubleDualLeft[101X360361[29X[2XNaturalTransformationFromIdentityToDoubleDualLeft[102X( [3XR[103X ) [32X attribute362[6XReturns:[106X [33X[0;10Ya natural transformation [23X\mathrm{Id} \rightarrow363\mathrm{FunctorDoubleDualLeft}[123X[133X364365[33X[0;0YThe argument is a homalg ring [23XR[123X. The output is the natural morphism from the366identity functor to the double dual functor in left Presentations category.[133X367368[1X1.6-8 NaturalTransformationFromIdentityToDoubleDualRight[101X369370[29X[2XNaturalTransformationFromIdentityToDoubleDualRight[102X( [3XR[103X ) [32X attribute371[6XReturns:[106X [33X[0;10Ya natural transformation [23X\mathrm{Id} \rightarrow372\mathrm{FunctorDoubleDualRight}[123X[133X373374[33X[0;0YThe argument is a homalg ring [23XR[123X. The output is the natural morphism from the375identity functor to the double dual functor in right Presentations category.[133X376377378379