CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutSign UpSign In

Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.

| Download

GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it

Views: 418346
1
2
1 Module Presentations
3
4
5
1.1 Functors
6
7
1.1-1 FunctorStandardModuleLeft
8
9
FunctorStandardModuleLeft( R )  attribute
10
Returns: a functor
11
12
The argument is a homalg ring R. The output is a functor which takes a left
13
presentation as input and computes its standard presentation.
14
15
1.1-2 FunctorStandardModuleRight
16
17
FunctorStandardModuleRight( R )  attribute
18
Returns: a functor
19
20
The argument is a homalg ring R. The output is a functor which takes a right
21
presentation as input and computes its standard presentation.
22
23
1.1-3 FunctorGetRidOfZeroGeneratorsLeft
24
25
FunctorGetRidOfZeroGeneratorsLeft( R )  attribute
26
Returns: a functor
27
28
The argument is a homalg ring R. The output is a functor which takes a left
29
presentation as input and gets rid of the zero generators.
30
31
1.1-4 FunctorGetRidOfZeroGeneratorsRight
32
33
FunctorGetRidOfZeroGeneratorsRight( R )  attribute
34
Returns: a functor
35
36
The argument is a homalg ring R. The output is a functor which takes a right
37
presentation as input and gets rid of the zero generators.
38
39
1.1-5 FunctorLessGeneratorsLeft
40
41
FunctorLessGeneratorsLeft( R )  attribute
42
Returns: a functor
43
44
The argument is a homalg ring R. The output is functor which takes a left
45
presentation as input and computes a presentation having less generators.
46
47
1.1-6 FunctorLessGeneratorsRight
48
49
FunctorLessGeneratorsRight( R )  attribute
50
Returns: a functor
51
52
The argument is a homalg ring R. The output is functor which takes a right
53
presentation as input and computes a presentation having less generators.
54
55
1.1-7 FunctorDualLeft
56
57
FunctorDualLeft( R )  attribute
58
Returns: a functor
59
60
The argument is a homalg ring R that has an involution function. The output
61
is functor which takes a left presentation M as input and computes its
62
Hom(M, R) as a left presentation.
63
64
1.1-8 FunctorDualRight
65
66
FunctorDualRight( R )  attribute
67
Returns: a functor
68
69
The argument is a homalg ring R that has an involution function. The output
70
is functor which takes a right presentation M as input and computes its
71
Hom(M, R) as a right presentation.
72
73
1.1-9 FunctorDoubleDualLeft
74
75
FunctorDoubleDualLeft( R )  attribute
76
Returns: a functor
77
78
The argument is a homalg ring R that has an involution function. The output
79
is functor which takes a left presentation M as input and computes its Hom(
80
Hom(M, R), R ) as a left presentation.
81
82
1.1-10 FunctorDoubleDualRight
83
84
FunctorDoubleDualRight( R )  attribute
85
Returns: a functor
86
87
The argument is a homalg ring R that has an involution function. The output
88
is functor which takes a right presentation M as input and computes its Hom(
89
Hom(M, R), R ) as a right presentation.
90
91
92
1.2 GAP Categories
93
94
1.2-1 IsLeftOrRightPresentationMorphism
95
96
IsLeftOrRightPresentationMorphism( object )  filter
97
Returns: true or false
98
99
The GAP category of morphisms in the category of left or right
100
presentations.
101
102
1.2-2 IsLeftPresentationMorphism
103
104
IsLeftPresentationMorphism( object )  filter
105
Returns: true or false
106
107
The GAP category of morphisms in the category of left presentations.
108
109
1.2-3 IsRightPresentationMorphism
110
111
IsRightPresentationMorphism( object )  filter
112
Returns: true or false
113
114
The GAP category of morphisms in the category of right presentations.
115
116
1.2-4 IsLeftOrRightPresentation
117
118
IsLeftOrRightPresentation( object )  filter
119
Returns: true or false
120
121
The GAP category of objects in the category of left presentations or right
122
presentations.
123
124
1.2-5 IsLeftPresentation
125
126
IsLeftPresentation( object )  filter
127
Returns: true or false
128
129
The GAP category of objects in the category of left presentations.
130
131
1.2-6 IsRightPresentation
132
133
IsRightPresentation( object )  filter
134
Returns: true or false
135
136
The GAP category of objects in the category of right presentations.
137
138
139
1.3 Constructors
140
141
1.3-1 PresentationMorphism
142
143
PresentationMorphism( A, M, B )  operation
144
Returns: a morphism in \mathrm{Hom}(A,B)
145
146
The arguments are an object A, a homalg matrix M, and another object B. A
147
and B shall either both be objects in the category of left presentations or
148
both be objects in the category of right presentations. The output is a
149
morphism A \rightarrow B in the the category of left or right presentations
150
whose underlying matrix is given by M.
151
152
1.3-2 AsMorphismBetweenFreeLeftPresentations
153
154
AsMorphismBetweenFreeLeftPresentations( m )  attribute
155
Returns: a morphism in \mathrm{Hom}(F^r,F^c)
156
157
The argument is a homalg matrix m. The output is a morphism F^r \rightarrow
158
F^c in the the category of left presentations whose underlying matrix is
159
given by m, where F^r and F^c are free left presentations of ranks given by
160
the number of rows and columns of m.
161
162
1.3-3 AsMorphismBetweenFreeRightPresentations
163
164
AsMorphismBetweenFreeRightPresentations( m )  attribute
165
Returns: a morphism in \mathrm{Hom}(F^c,F^r)
166
167
The argument is a homalg matrix m. The output is a morphism F^c \rightarrow
168
F^r in the the category of right presentations whose underlying matrix is
169
given by m, where F^r and F^c are free right presentations of ranks given by
170
the number of rows and columns of m.
171
172
1.3-4 AsLeftPresentation
173
174
AsLeftPresentation( M )  operation
175
Returns: an object
176
177
The argument is a homalg matrix M over a ring R. The output is an object in
178
the category of left presentations over R. This object has M as its
179
underlying matrix.
180
181
1.3-5 AsRightPresentation
182
183
AsRightPresentation( M )  operation
184
Returns: an object
185
186
The argument is a homalg matrix M over a ring R. The output is an object in
187
the category of right presentations over R. This object has M as its
188
underlying matrix.
189
190
1.3-6 AsLeftOrRightPresentation
191
192
AsLeftOrRightPresentation( M, l )  function
193
Returns: an object
194
195
The arguments are a homalg matrix M and a boolean l. If l is true, the
196
output is an object in the category of left presentations. If l is false,
197
the output is an object in the category of right presentations. In both
198
cases, the underlying matrix of the result is M.
199
200
1.3-7 FreeLeftPresentation
201
202
FreeLeftPresentation( r, R )  operation
203
Returns: an object
204
205
The arguments are a non-negative integer r and a homalg ring R. The output
206
is an object in the category of left presentations over R. It is represented
207
by the 0 \times r matrix and thus it is free of rank r.
208
209
1.3-8 FreeRightPresentation
210
211
FreeRightPresentation( r, R )  operation
212
Returns: an object
213
214
The arguments are a non-negative integer r and a homalg ring R. The output
215
is an object in the category of right presentations over R. It is
216
represented by the r \times 0 matrix and thus it is free of rank r.
217
218
1.3-9 UnderlyingMatrix
219
220
UnderlyingMatrix( A )  attribute
221
Returns: a homalg matrix
222
223
The argument is an object A in the category of left or right presentations
224
over a homalg ring R. The output is the underlying matrix which presents A.
225
226
1.3-10 UnderlyingHomalgRing
227
228
UnderlyingHomalgRing( A )  attribute
229
Returns: a homalg ring
230
231
The argument is an object A in the category of left or right presentations
232
over a homalg ring R. The output is R.
233
234
1.3-11 Annihilator
235
236
Annihilator( A )  attribute
237
Returns: a morphism in \mathrm{Hom}(I, F)
238
239
The argument is an object A in the category of left or right presentations.
240
The output is the embedding of the annihilator I of A into the free module F
241
of rank 1. In particular, the annihilator itself is seen as a left or right
242
presentation.
243
244
1.3-12 LeftPresentations
245
246
LeftPresentations( R )  attribute
247
Returns: a category
248
249
The argument is a homalg ring R. The output is the category of free left
250
presentations over R.
251
252
1.3-13 RightPresentations
253
254
RightPresentations( R )  attribute
255
Returns: a category
256
257
The argument is a homalg ring R. The output is the category of free right
258
presentations over R.
259
260
261
1.4 Attributes
262
263
1.4-1 UnderlyingHomalgRing
264
265
UnderlyingHomalgRing( R )  attribute
266
Returns: a homalg ring
267
268
The argument is a morphism \alpha in the category of left or right
269
presentations over a homalg ring R. The output is R.
270
271
1.4-2 UnderlyingMatrix
272
273
UnderlyingMatrix( alpha )  attribute
274
Returns: a homalg matrix
275
276
The argument is a morphism \alpha in the category of left or right
277
presentations. The output is its underlying homalg matrix.
278
279
280
1.5 Non-Categorical Operations
281
282
1.5-1 StandardGeneratorMorphism
283
284
StandardGeneratorMorphism( A, i )  operation
285
Returns: a morphism in \mathrm{Hom}(F, A)
286
287
The argument is an object A in the category of left or right presentations
288
over a homalg ring R with underlying matrix M and an integer i. The output
289
is a morphism F \rightarrow A given by the i-th row or column of M, where F
290
is a free left or right presentation of rank 1.
291
292
1.5-2 CoverByFreeModule
293
294
CoverByFreeModule( A )  attribute
295
Returns: a morphism in \mathrm{Hom}(F,A)
296
297
The argument is an object A in the category of left or right presentations.
298
The output is a morphism from a free module F to A, which maps the standard
299
generators of the free module to the generators of A.
300
301
302
1.6 Natural Transformations
303
304
1.6-1 NaturalIsomorphismFromIdentityToStandardModuleLeft
305
306
NaturalIsomorphismFromIdentityToStandardModuleLeft( R )  attribute
307
Returns: a natural transformation \mathrm{Id} \rightarrow
308
\mathrm{StandardModuleLeft}
309
310
The argument is a homalg ring R. The output is the natural isomorphism from
311
the identity functor to the left standard module functor.
312
313
1.6-2 NaturalIsomorphismFromIdentityToStandardModuleRight
314
315
NaturalIsomorphismFromIdentityToStandardModuleRight( R )  attribute
316
Returns: a natural transformation \mathrm{Id} \rightarrow
317
\mathrm{StandardModuleRight}
318
319
The argument is a homalg ring R. The output is the natural isomorphism from
320
the identity functor to the right standard module functor.
321
322
1.6-3 NaturalIsomorphismFromIdentityToGetRidOfZeroGeneratorsLeft
323
324
NaturalIsomorphismFromIdentityToGetRidOfZeroGeneratorsLeft( R )  attribute
325
Returns: a natural transformation \mathrm{Id} \rightarrow
326
\mathrm{GetRidOfZeroGeneratorsLeft}
327
328
The argument is a homalg ring R. The output is the natural isomorphism from
329
the identity functor to the functor that gets rid of zero generators of left
330
modules.
331
332
1.6-4 NaturalIsomorphismFromIdentityToGetRidOfZeroGeneratorsRight
333
334
NaturalIsomorphismFromIdentityToGetRidOfZeroGeneratorsRight( R )  attribute
335
Returns: a natural transformation \mathrm{Id} \rightarrow
336
\mathrm{GetRidOfZeroGeneratorsRight}
337
338
The argument is a homalg ring R. The output is the natural isomorphism from
339
the identity functor to the functor that gets rid of zero generators of
340
right modules.
341
342
1.6-5 NaturalIsomorphismFromIdentityToLessGeneratorsLeft
343
344
NaturalIsomorphismFromIdentityToLessGeneratorsLeft( R )  attribute
345
Returns: a natural transformation \mathrm{Id} \rightarrow
346
\mathrm{LessGeneratorsLeft}
347
348
The argument is a homalg ring R. The output is the natural morphism from the
349
identity functor to the left less generators functor.
350
351
1.6-6 NaturalIsomorphismFromIdentityToLessGeneratorsRight
352
353
NaturalIsomorphismFromIdentityToLessGeneratorsRight( R )  attribute
354
Returns: a natural transformation \mathrm{Id} \rightarrow
355
\mathrm{LessGeneratorsRight}
356
357
The argument is a homalg ring R. The output is the natural morphism from the
358
identity functor to the right less generator functor.
359
360
1.6-7 NaturalTransformationFromIdentityToDoubleDualLeft
361
362
NaturalTransformationFromIdentityToDoubleDualLeft( R )  attribute
363
Returns: a natural transformation \mathrm{Id} \rightarrow
364
\mathrm{FunctorDoubleDualLeft}
365
366
The argument is a homalg ring R. The output is the natural morphism from the
367
identity functor to the double dual functor in left Presentations category.
368
369
1.6-8 NaturalTransformationFromIdentityToDoubleDualRight
370
371
NaturalTransformationFromIdentityToDoubleDualRight( R )  attribute
372
Returns: a natural transformation \mathrm{Id} \rightarrow
373
\mathrm{FunctorDoubleDualRight}
374
375
The argument is a homalg ring R. The output is the natural morphism from the
376
identity functor to the double dual functor in right Presentations category.
377
378
379