Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
Project: cocalc-sagemath-dev-slelievre
Views: 418346#! @Chapter Examples and Tests #! @Section Closed Monoidal Structure LoadPackage( "ModulePresentationsForCAP" ); LoadPackage( "RingsForHomalg" ); #! @Example R := HomalgRingOfIntegers( );; M := AsLeftPresentation( HomalgMatrix( [ [ 2 ] ], 1, 1, R ) ); #! <An object in Category of left presentations of Z> N := AsLeftPresentation( HomalgMatrix( [ [ 3 ] ], 1, 1, R ) ); #! <An object in Category of left presentations of Z> T := TensorProductOnObjects( M, N ); #! <An object in Category of left presentations of Z> Display( T ); #! [ [ 3 ], #! [ 2 ] ] #! #! An object in Category of left presentations of Z IsZero( T ); #! true H := InternalHomOnObjects( DirectSum( M, M ), DirectSum( M, N ) ); #! <An object in Category of left presentations of Z> Display( H ); #! [ [ -4, -2 ], #! [ 2, 2 ] ] #! #! An object in Category of left presentations of Z alpha := StandardGeneratorMorphism( H, 1 ); #! <A morphism in Category of left presentations of Z> l := LambdaElimination( DirectSum( M, M ), DirectSum( M, N ), alpha ); #! <A morphism in Category of left presentations of Z> IsZero( l ); #! false Display( l ); #! [ [ 0, 0 ], #! [ 1, 0 ] ] #! #! A morphism in Category of left presentations of Z alpha2 := StandardGeneratorMorphism( H, 2 ); #! <A morphism in Category of left presentations of Z> l2 := LambdaElimination( DirectSum( M, M ), DirectSum( M, N ), alpha2 ); #! <A morphism in Category of left presentations of Z> IsZero( l2 ); #! false Display( l2 ); #! [ [ 1, 0 ], #! [ 0, 0 ] ] #! #! A morphism in Category of left presentations of Z #! @EndExample