Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
Project: cocalc-sagemath-dev-slelievre
Views: 418346############################################################################# ## ## ModulePresentationsForCAP package ## ## Copyright 2014, Sebastian Gutsche, TU Kaiserslautern ## Sebastian Posur, RWTH Aachen ## #! @Chapter Module Presentations ## ############################################################################# ####################################### ## #! @Section Functors ## ####################################### #! @Description #! The argument is a homalg ring $R$. #! The output is a functor which takes #! a left presentation as input and computes #! its standard presentation. #! @Returns a functor #! @Arguments R DeclareAttribute( "FunctorStandardModuleLeft", IsHomalgRing ); #! @Description #! The argument is a homalg ring $R$. #! The output is a functor which takes #! a right presentation as input and computes #! its standard presentation. #! @Returns a functor #! @Arguments R DeclareAttribute( "FunctorStandardModuleRight", IsHomalgRing ); #! @Description #! The argument is a homalg ring $R$. #! The output is a functor which takes #! a left presentation as input and gets #! rid of the zero generators. #! @Returns a functor #! @Arguments R DeclareAttribute( "FunctorGetRidOfZeroGeneratorsLeft", IsHomalgRing ); #! @Description #! The argument is a homalg ring $R$. #! The output is a functor which takes #! a right presentation as input and gets #! rid of the zero generators. #! @Returns a functor #! @Arguments R DeclareAttribute( "FunctorGetRidOfZeroGeneratorsRight", IsHomalgRing ); #! @Description #! The argument is a homalg ring $R$. #! The output is functor which takes #! a left presentation as input and computes #! a presentation having less generators. #! @Returns a functor #! @Arguments R DeclareAttribute( "FunctorLessGeneratorsLeft", IsHomalgRing ); #! @Description #! The argument is a homalg ring $R$. #! The output is functor which takes #! a right presentation as input and computes #! a presentation having less generators. #! @Returns a functor #! @Arguments R DeclareAttribute( "FunctorLessGeneratorsRight", IsHomalgRing ); #! @Description #! The argument is a homalg ring $R$ that has an involution function. #! The output is functor which takes #! a left presentation <A>M</A> as input and computes #! its Hom(M, R) as a left presentation. #! @Returns a functor #! @Arguments R DeclareAttribute( "FunctorDualLeft", IsHomalgRing ); #! @Description #! The argument is a homalg ring $R$ that has an involution function. #! The output is functor which takes #! a right presentation <A>M</A> as input and computes #! its Hom(M, R) as a right presentation. #! @Returns a functor #! @Arguments R DeclareAttribute( "FunctorDualRight", IsHomalgRing ); #! @Description #! The argument is a homalg ring $R$ that has an involution function. #! The output is functor which takes #! a left presentation <A>M</A> as input and computes #! its <A>Hom( Hom(M, R), R )</A> as a left presentation. #! @Returns a functor #! @Arguments R DeclareAttribute( "FunctorDoubleDualLeft", IsHomalgRing ); #! @Description #! The argument is a homalg ring $R$ that has an involution function. #! The output is functor which takes #! a right presentation <A>M</A> as input and computes #! its <A>Hom( Hom(M, R), R )</A> as a right presentation. #! @Returns a functor #! @Arguments R DeclareAttribute( "FunctorDoubleDualRight", IsHomalgRing );