Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
Project: cocalc-sagemath-dev-slelievre
Views: 41834612[1X[5XModules[105X[101X345[1XA [5Xhomalg[105X based Package for the Abelian Category of Finitely Presented6Modules over Computable Rings[101X789Version 2018.01.07101112September 2015131415Mohamed Barakat1617Markus Lange-Hegermann18192021[33X[0;10Y([13Xthis manual is still under construction[113X)[133X22[33X[0;10YThis manual is best viewed as an [12XHTML[112X document. The23latest version is available [12Xonline[112X at:[133X24[33X[0;10Y[7Xhttp://homalg.math.rwth-aachen.de/~barakat/homalg-project/Modules/chap0.html[107X[133X25[33X[0;10YAn [12Xoffline[112X version should be included in the26documentation subfolder of the package. This package is27part of the [5Xhomalg[105X-project:[133X28[33X[0;10Y[7Xhttp://homalg.math.rwth-aachen.de/index.php/core-packages/modules-package[107X[133X29303132Mohamed Barakat33Email: [7Xmailto:[email protected][107X34Homepage: [7Xhttp://www.mathematik.uni-kl.de/~barakat/[107X35Address: [33X[0;14YDepartment of Mathematics,[133X36[33X[0;14YUniversity of Kaiserslautern,[133X37[33X[0;14Y67653 Kaiserslautern,[133X38[33X[0;14YGermany[133X394041Markus Lange-Hegermann42Email: [7Xmailto:[email protected][107X43Homepage: [7Xhttp://wwwb.math.rwth-aachen.de/~markus[107X44Address: [33X[0;14YLehrstuhl B für Mathematik, RWTH Aachen, Templergraben 64,4552056 Aachen, Germany[133X46474849-------------------------------------------------------50[1XCopyright[101X51[33X[0;0Y© 2007-2015 by Mohamed Barakat and Markus Lange-Hegermann[133X5253[33X[0;0YThis package may be distributed under the terms and conditions of the GNU54Public License Version 2.[133X555657-------------------------------------------------------58[1XAcknowledgements[101X59[33X[0;0YWe are very much indebted to Alban Quadrat.[133X606162-------------------------------------------------------636465[1XContents (Modules)[101X66671 [33X[0;0YIntroduction[133X681.1 [33X[0;0YWhat is the role of the [5XModules[105X package in the [5Xhomalg[105X project?[133X691.1-1 [33X[0;0Y[5XModules[105X provides ...[133X701.1-2 [33X[0;0YRings supported in a sufficient way[133X711.1-3 [33X[0;0YPrincipal limitation[133X721.1-4 [33X[0;0YRing dictionaries (technical)[133X731.1-5 [33X[0;0YThe advantages of the outsourcing concept[133X741.1-6 [33X[0;0YDoes this mean that [5Xhomalg[105X has only algorithms for the generic75case?[133X761.1-7 [33X[0;0YThe principle of least communication (technical)[133X771.1-8 [33X[0;0YFrequently asked questions[133X781.2 [33X[0;0YThis manual[133X792 [33X[0;0YInstallation of the [5XModules[105X Package[133X803 [33X[0;0YQuick Start[133X813.1 [33X[0;0YWhy are all examples in this manual over ℤ or [22Xℤ/mℤ[122X?[133X823.2 [33X[0;0Y[10Xgap> ExamplesForHomalg();[110X[133X833.3 [33X[0;0YA typical example[133X843.3-1 [33X[0;0YHomHom[133X854 [33X[0;0YRing Maps[133X864.1 [33X[0;0YRing Maps: Attributes[133X874.1-1 KernelSubobject884.1-2 KernelEmb894.2 [33X[0;0YRing Maps: Operations and Functions[133X904.2-1 Kernel915 [33X[0;0YRelations[133X925.1 [33X[0;0YRelations: Categories and Representations[133X935.1-1 IsHomalgRelations945.1-2 IsHomalgRelationsOfLeftModule955.1-3 IsHomalgRelationsOfRightModule965.1-4 IsRelationsOfFinitelyPresentedModuleRep975.2 [33X[0;0YRelations: Constructors[133X985.3 [33X[0;0YRelations: Properties[133X995.3-1 CanBeUsedToDecideZeroEffectively1005.3-2 IsInjectivePresentation1015.4 [33X[0;0YRelations: Attributes[133X1025.5 [33X[0;0YRelations: Operations and Functions[133X1036 [33X[0;0YGenerators[133X1046.1 [33X[0;0YGenerators: Categories and Representations[133X1056.1-1 IsHomalgGenerators1066.1-2 IsHomalgGeneratorsOfLeftModule1076.1-3 IsHomalgGeneratorsOfRightModule1086.1-4 IsGeneratorsOfModuleRep1096.1-5 IsGeneratorsOfFinitelyGeneratedModuleRep1106.2 [33X[0;0YGenerators: Constructors[133X1116.3 [33X[0;0YGenerators: Properties[133X1126.3-1 IsReduced1136.4 [33X[0;0YGenerators: Attributes[133X1146.4-1 ProcedureToReadjustGenerators1156.5 [33X[0;0YGenerators: Operations and Functions[133X1167 [33X[0;0YModules[133X1177.1 [33X[0;0YModules: Category and Representations[133X1187.1-1 IsHomalgModule1197.1-2 IsFinitelyPresentedModuleOrSubmoduleRep1207.1-3 IsFinitelyPresentedModuleRep1217.1-4 IsFinitelyPresentedSubmoduleRep1227.2 [33X[0;0YModules: Constructors[133X1237.2-1 LeftPresentation1247.2-2 RightPresentation1257.2-3 HomalgFreeLeftModule1267.2-4 HomalgFreeRightModule1277.2-5 HomalgZeroLeftModule1287.2-6 HomalgZeroRightModule1297.2-7 \*1307.2-8 Subobject1317.2-9 Subobject1327.2-10 LeftSubmodule1337.2-11 RightSubmodule1347.3 [33X[0;0YModules: Properties[133X1357.3-1 IsCyclic1367.3-2 IsHolonomic1377.3-3 IsReduced1387.3-4 IsPrimeIdeal1397.3-5 IsPrimeModule1407.4 [33X[0;0YModules: Attributes[133X1417.4-1 ResidueClassRing1427.4-2 PrimaryDecomposition1437.4-3 RadicalDecomposition1447.4-4 ModuleOfKaehlerDifferentials1457.4-5 RadicalSubobject1467.4-6 SymmetricAlgebra1477.4-7 ExteriorAlgebra1487.4-8 ElementaryDivisors1497.4-9 FittingIdeal1507.4-10 NonFlatLocus1517.4-11 LargestMinimalNumberOfLocalGenerators1527.4-12 CoefficientsOfUnreducedNumeratorOfHilbertPoincareSeries1537.4-13 CoefficientsOfNumeratorOfHilbertPoincareSeries1547.4-14 UnreducedNumeratorOfHilbertPoincareSeries1557.4-15 NumeratorOfHilbertPoincareSeries1567.4-16 HilbertPoincareSeries1577.4-17 AffineDegree1587.4-18 DataOfHilbertFunction1597.4-19 HilbertFunction1607.4-20 IndexOfRegularity1617.5 [33X[0;0YModules: Operations and Functions[133X1627.5-1 HomalgRing1637.5-2 ByASmallerPresentation1647.5-3 \*1657.5-4 SubobjectQuotient1668 [33X[0;0YMaps[133X1678.1 [33X[0;0YMaps: Categories and Representations[133X1688.1-1 IsHomalgMap1698.1-2 IsHomalgSelfMap1708.1-3 IsMapOfFinitelyGeneratedModulesRep1718.2 [33X[0;0YMaps: Constructors[133X1728.2-1 HomalgMap1738.2-2 HomalgZeroMap1748.2-3 HomalgIdentityMap1758.3 [33X[0;0YMaps: Properties[133X1768.4 [33X[0;0YMaps: Attributes[133X1778.5 [33X[0;0YMaps: Operations and Functions[133X1788.5-1 HomalgRing1798.5-2 PreInverse1809 [33X[0;0YModule Elements[133X1819.1 [33X[0;0YModule Elements: Category and Representations[133X1829.1-1 IsHomalgElement1839.1-2 IsElementOfAModuleGivenByAMorphismRep1849.2 [33X[0;0YModule Elements: Constructors[133X1859.3 [33X[0;0YModule Elements: Properties[133X1869.3-1 IsElementOfIntegers1879.4 [33X[0;0YModule Elements: Attributes[133X1889.5 [33X[0;0YModule Elements: Operations and Functions[133X1899.5-1 HomalgRing19010 [33X[0;0YFunctors[133X19110.1 [33X[0;0YFunctors: Category and Representations[133X19210.2 [33X[0;0YFunctors: Constructors[133X19310.3 [33X[0;0YFunctors: Attributes[133X19410.4 [33X[0;0YBasic Functors[133X19510.4-1 functor_Cokernel19610.4-2 Cokernel19710.4-3 functor_ImageObject19810.4-4 ImageObject19910.4-5 Kernel20010.4-6 DefectOfExactness20110.4-7 Functor_Hom20210.4-8 Hom20310.4-9 Functor_TensorProduct20410.4-10 TensorProduct20510.4-11 Functor_Ext20610.4-12 Ext20710.4-13 Functor_Tor20810.4-14 Tor20910.4-15 Functor_RHom21010.4-16 RHom21110.4-17 Functor_LTensorProduct21210.4-18 LTensorProduct21310.4-19 Functor_HomHom21410.4-20 Functor_LHomHom21510.5 [33X[0;0YTool Functors[133X21610.6 [33X[0;0YOther Functors[133X21710.7 [33X[0;0YFunctors: Operations and Functions[133X21811 [33X[0;0YSymmetric Algebra and Koszul Complex[133X21911.1 [33X[0;0YSymmetric Algebra: Constructor[133X22011.1-1 SymmetricPower22111.2 [33X[0;0YSymmetric Algebra: Properties and Attributes[133X22211.2-1 IsSymmetricPower22311.2-2 SymmetricPowerExponent22411.2-3 SymmetricPowerBaseModule22512 [33X[0;0YExterior Algebra and Koszul Complex[133X22612.1 [33X[0;0YExterior Algebra: Constructor[133X22712.1-1 ExteriorPower22812.2 [33X[0;0YExterior Algebra: Properties and Attributes[133X22912.2-1 IsExteriorPower23012.2-2 ExteriorPowerExponent23112.2-3 ExteriorPowerBaseModule23212.3 [33X[0;0YExterior Algebra: Element Properties[133X23312.3-1 IsExteriorPowerElement23412.4 [33X[0;0YExterior Algebra: Element Operations[133X23512.4-1 Wedge23612.4-2 ExteriorPowerElementDual23712.4-3 SingleValueOfExteriorPowerElement23812.5 [33X[0;0YKoszul complex and Cayley determinant[133X23912.5-1 KoszulCocomplex24012.5-2 CayleyDeterminant24112.5-3 Gcd_UsingCayleyDeterminant24213 [33X[0;0YExamples[133X24313.1 [33X[0;0YExtExt[133X24413.2 [33X[0;0YPurity[133X24513.3 [33X[0;0YTorExt-Grothendieck[133X24613.4 [33X[0;0YTorExt[133X247A [33X[0;0YThe Mathematical Idea behind [5XModules[105X[133X248B [33X[0;0YLogic Subpackages[133X249B.1 [33X[0;0Y[5XLIMOD[105X: Logical Implications for Modules[133X250B.2 [33X[0;0Y[5XLIHOM[105X: Logical Implications for Homomorphisms of Modules[133X251C [33X[0;0YOverview of the [5XModules[105X Package Source Code[133X252C.1 [33X[0;0YRelations and Generators[133X253C.2 [33X[0;0YThe Basic Objects[133X254C.3 [33X[0;0YThe High Level Homological Algorithms[133X255C.4 [33X[0;0YLogical Implications for [5Xhomalg[105X Objects[133X256257258[32X259260261