Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
Project: cocalc-sagemath-dev-slelievre
Views: 4183461[1X12 [33X[0;0YExterior Algebra and Koszul Complex[133X[101X23[33X[0;0YWhat follows are several operations related to the exterior algebra of a4free module:[133X56[30X [33X[0;6YA constructor for the graded parts of the exterior algebra ([21Xexterior7powers[121X)[133X89[30X [33X[0;6YSeveral Operations on elements of these exterior powers[133X1011[30X [33X[0;6YA constructor for the [21XKoszul complex[121X[133X1213[30X [33X[0;6YAn implementation of the [21XCayley determinant[121X as defined in [CQ11],14which allows calculating greatest common divisors from finite free15resolutions.[133X161718[1X12.1 [33X[0;0YExterior Algebra: Constructor[133X[101X1920[1X12.1-1 ExteriorPower[101X2122[29X[2XExteriorPower[102X( [3Xk[103X, [3XM[103X ) [32X operation23[6XReturns:[106X [33X[0;10Ya [5Xhomalg[105X module[133X2425[33X[0;0YConstruct the [3Xk[103X-th exterior power of module [3XM[103X.[133X262728[1X12.2 [33X[0;0YExterior Algebra: Properties and Attributes[133X[101X2930[1X12.2-1 IsExteriorPower[101X3132[29X[2XIsExteriorPower[102X( [3XM[103X ) [32X property33[6XReturns:[106X [33X[0;10Y[10Xtrue[110X or [10Xfalse[110X[133X3435[33X[0;0YMarks a module as an exterior power of another module.[133X3637[1X12.2-2 ExteriorPowerExponent[101X3839[29X[2XExteriorPowerExponent[102X( [3XM[103X ) [32X attribute40[6XReturns:[106X [33X[0;10Yan integer[133X4142[33X[0;0YThe exponent of the exterior power.[133X4344[1X12.2-3 ExteriorPowerBaseModule[101X4546[29X[2XExteriorPowerBaseModule[102X( [3XM[103X ) [32X attribute47[6XReturns:[106X [33X[0;10Ya homalg module[133X4849[33X[0;0YThe module that [3XM[103X is an exterior power of.[133X505152[1X12.3 [33X[0;0YExterior Algebra: Element Properties[133X[101X5354[1X12.3-1 IsExteriorPowerElement[101X5556[29X[2XIsExteriorPowerElement[102X( [3Xx[103X ) [32X property57[6XReturns:[106X [33X[0;10Y[10Xtrue[110X or [10Xfalse[110X[133X5859[33X[0;0YChecks if the element [3Xx[103X is from an exterior power.[133X606162[1X12.4 [33X[0;0YExterior Algebra: Element Operations[133X[101X6364[1X12.4-1 Wedge[101X6566[29X[2XWedge[102X( [3Xx[103X, [3Xy[103X ) [32X operation67[6XReturns:[106X [33X[0;10Yan element of an exterior power[133X6869[33X[0;0YCalculate [22X[3Xx[103X ∧ [3Xy[103X[122X.[133X7071[1X12.4-2 ExteriorPowerElementDual[101X7273[29X[2XExteriorPowerElementDual[102X( [3Xx[103X ) [32X operation74[6XReturns:[106X [33X[0;10Yan element of an exterior power[133X7576[33X[0;0YFor [3Xx[103X in a q-th exterior power of a free module of rank n, return [22X[3Xx[103X*[122X in the77(n-q)-th exterior power, as defined in [CQ11].[133X7879[1X12.4-3 SingleValueOfExteriorPowerElement[101X8081[29X[2XSingleValueOfExteriorPowerElement[102X( [3Xx[103X ) [32X operation82[6XReturns:[106X [33X[0;10Ya ring element[133X8384[33X[0;0YFor [3Xx[103X in a highest exterior power, returns its single coordinate in the85canonical basis; i.e. [22X[[3Xx[103X][122X as defined in [CQ11].[133X868788[1X12.5 [33X[0;0YKoszul complex and Cayley determinant[133X[101X8990[1X12.5-1 KoszulCocomplex[101X9192[29X[2XKoszulCocomplex[102X( [3Xa[103X, [3XE[103X ) [32X operation93[6XReturns:[106X [33X[0;10Ya [5Xhomalg[105X cocomplex[133X9495[33X[0;0YCalculate the [3XE[103X-valued Koszul complex of [3Xa[103X.[133X9697[1X12.5-2 CayleyDeterminant[101X9899[29X[2XCayleyDeterminant[102X( [3XC[103X ) [32X operation100[6XReturns:[106X [33X[0;10Ya ring element[133X101102[33X[0;0YCalculate the Cayley determinant of the complex [3XC[103X, as defined in [CQ11].[133X103104[1X12.5-3 Gcd_UsingCayleyDeterminant[101X105106[29X[2XGcd_UsingCayleyDeterminant[102X( [3Xx[103X, [3Xy[103X[, [3X...[103X] ) [32X function107[6XReturns:[106X [33X[0;10Ya ring element[133X108109[33X[0;0YReturns the greatest common divisor of the given ring elements, calculated110using the Cayley determinant.[133X111112113114