Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
Project: cocalc-sagemath-dev-slelievre
Views: 4183461[1X13 [33X[0;0YExamples[133X[101X234[1X13.1 [33X[0;0YExtExt[133X[101X56[33X[0;0YThis corresponds to Example B.2 in [Bar].[133X78[4X[32X Example [32X[104X9[4X[25Xgap>[125X [27XZZ := HomalgRingOfIntegers( );[127X[104X10[4X[28XZ[128X[104X11[4X[25Xgap>[125X [27Ximat := HomalgMatrix( "[ \[127X[104X12[4X[25X>[125X [27X 262, -33, 75, -40, \[127X[104X13[4X[25X>[125X [27X 682, -86, 196, -104, \[127X[104X14[4X[25X>[125X [27X 1186, -151, 341, -180, \[127X[104X15[4X[25X>[125X [27X-1932, 248, -556, 292, \[127X[104X16[4X[25X>[125X [27X 1018, -127, 293, -156 \[127X[104X17[4X[25X>[125X [27X]", 5, 4, ZZ );[127X[104X18[4X[28X<A 5 x 4 matrix over an internal ring>[128X[104X19[4X[25Xgap>[125X [27XM := LeftPresentation( imat );[127X[104X20[4X[28X<A left module presented by 5 relations for 4 generators>[128X[104X21[4X[25Xgap>[125X [27XN := Hom( ZZ, M );[127X[104X22[4X[28X<A rank 1 right module on 4 generators satisfying yet unknown relations>[128X[104X23[4X[25Xgap>[125X [27XF := InsertObjectInMultiFunctor( Functor_Hom_for_fp_modules, 2, N, "TensorN" );[127X[104X24[4X[28X<The functor TensorN for f.p. modules and their maps over computable rings>[128X[104X25[4X[25Xgap>[125X [27XG := LeftDualizingFunctor( ZZ );;[127X[104X26[4X[25Xgap>[125X [27XII_E := GrothendieckSpectralSequence( F, G, M );[127X[104X27[4X[28X<A stable homological spectral sequence with sheets at levels [128X[104X28[4X[28X[ 0 .. 2 ] each consisting of left modules at bidegrees [ -1 .. 0 ]x[128X[104X29[4X[28X[ 0 .. 1 ]>[128X[104X30[4X[25Xgap>[125X [27XDisplay( II_E );[127X[104X31[4X[28XThe associated transposed spectral sequence:[128X[104X32[4X[28X[128X[104X33[4X[28Xa homological spectral sequence at bidegrees[128X[104X34[4X[28X[ [ 0 .. 1 ], [ -1 .. 0 ] ][128X[104X35[4X[28X---------[128X[104X36[4X[28XLevel 0:[128X[104X37[4X[28X[128X[104X38[4X[28X * *[128X[104X39[4X[28X * *[128X[104X40[4X[28X---------[128X[104X41[4X[28XLevel 1:[128X[104X42[4X[28X[128X[104X43[4X[28X * *[128X[104X44[4X[28X . .[128X[104X45[4X[28X---------[128X[104X46[4X[28XLevel 2:[128X[104X47[4X[28X[128X[104X48[4X[28X s s[128X[104X49[4X[28X . .[128X[104X50[4X[28X[128X[104X51[4X[28XNow the spectral sequence of the bicomplex:[128X[104X52[4X[28X[128X[104X53[4X[28Xa homological spectral sequence at bidegrees[128X[104X54[4X[28X[ [ -1 .. 0 ], [ 0 .. 1 ] ][128X[104X55[4X[28X---------[128X[104X56[4X[28XLevel 0:[128X[104X57[4X[28X[128X[104X58[4X[28X * *[128X[104X59[4X[28X * *[128X[104X60[4X[28X---------[128X[104X61[4X[28XLevel 1:[128X[104X62[4X[28X[128X[104X63[4X[28X * *[128X[104X64[4X[28X . s[128X[104X65[4X[28X---------[128X[104X66[4X[28XLevel 2:[128X[104X67[4X[28X[128X[104X68[4X[28X s s[128X[104X69[4X[28X . s[128X[104X70[4X[25Xgap>[125X [27Xfilt := FiltrationBySpectralSequence( II_E, 0 );[127X[104X71[4X[28X<An ascending filtration with degrees [ -1 .. 0 ] and graded parts:[128X[104X72[4X[28X 0: <A non-torsion left module presented by 3 relations for 4 generators>[128X[104X73[4X[28X -1: <A non-zero left module presented by 33 relations for 8 generators>[128X[104X74[4X[28Xof[128X[104X75[4X[28X<A non-zero left module presented by 27 relations for 19 generators>>[128X[104X76[4X[25Xgap>[125X [27XByASmallerPresentation( filt );[127X[104X77[4X[28X<An ascending filtration with degrees [ -1 .. 0 ] and graded parts:[128X[104X78[4X[28X 0: <A rank 1 left module presented by 2 relations for 3 generators>[128X[104X79[4X[28X [128X[104X80[4X[28X-1: <A non-zero torsion left module presented by 6 relations for 6 generators>[128X[104X81[4X[28Xof[128X[104X82[4X[28X<A rank 1 left module presented by 8 relations for 9 generators>>[128X[104X83[4X[25Xgap>[125X [27Xm := IsomorphismOfFiltration( filt );[127X[104X84[4X[28X<A non-zero isomorphism of left modules>[128X[104X85[4X[32X[104X868788[1X13.2 [33X[0;0YPurity[133X[101X8990[33X[0;0YThis corresponds to Example B.3 in [Bar].[133X9192[4X[32X Example [32X[104X93[4X[25Xgap>[125X [27XZZ := HomalgRingOfIntegers( );[127X[104X94[4X[28XZ[128X[104X95[4X[25Xgap>[125X [27Ximat := HomalgMatrix( "[ \[127X[104X96[4X[25X>[125X [27X 262, -33, 75, -40, \[127X[104X97[4X[25X>[125X [27X 682, -86, 196, -104, \[127X[104X98[4X[25X>[125X [27X 1186, -151, 341, -180, \[127X[104X99[4X[25X>[125X [27X-1932, 248, -556, 292, \[127X[104X100[4X[25X>[125X [27X 1018, -127, 293, -156 \[127X[104X101[4X[25X>[125X [27X]", 5, 4, ZZ );[127X[104X102[4X[28X<A 5 x 4 matrix over an internal ring>[128X[104X103[4X[25Xgap>[125X [27XM := LeftPresentation( imat );[127X[104X104[4X[28X<A left module presented by 5 relations for 4 generators>[128X[104X105[4X[25Xgap>[125X [27Xfilt := PurityFiltration( M );[127X[104X106[4X[28X<The ascending purity filtration with degrees [ -1 .. 0 ] and graded parts:[128X[104X107[4X[28X 0: <A free left module of rank 1 on a free generator>[128X[104X108[4X[28X [128X[104X109[4X[28X-1: <A non-zero torsion left module presented by 2 relations for 2 generators>[128X[104X110[4X[28Xof[128X[104X111[4X[28X<A non-pure rank 1 left module presented by 2 relations for 3 generators>>[128X[104X112[4X[25Xgap>[125X [27XM;[127X[104X113[4X[28X<A non-pure rank 1 left module presented by 2 relations for 3 generators>[128X[104X114[4X[25Xgap>[125X [27XII_E := SpectralSequence( filt );[127X[104X115[4X[28X<A stable homological spectral sequence with sheets at levels [128X[104X116[4X[28X[ 0 .. 2 ] each consisting of left modules at bidegrees [ -1 .. 0 ]x[128X[104X117[4X[28X[ 0 .. 1 ]>[128X[104X118[4X[25Xgap>[125X [27XDisplay( II_E );[127X[104X119[4X[28XThe associated transposed spectral sequence:[128X[104X120[4X[28X[128X[104X121[4X[28Xa homological spectral sequence at bidegrees[128X[104X122[4X[28X[ [ 0 .. 1 ], [ -1 .. 0 ] ][128X[104X123[4X[28X---------[128X[104X124[4X[28XLevel 0:[128X[104X125[4X[28X[128X[104X126[4X[28X * *[128X[104X127[4X[28X * *[128X[104X128[4X[28X---------[128X[104X129[4X[28XLevel 1:[128X[104X130[4X[28X[128X[104X131[4X[28X * *[128X[104X132[4X[28X . .[128X[104X133[4X[28X---------[128X[104X134[4X[28XLevel 2:[128X[104X135[4X[28X[128X[104X136[4X[28X s .[128X[104X137[4X[28X . .[128X[104X138[4X[28X[128X[104X139[4X[28XNow the spectral sequence of the bicomplex:[128X[104X140[4X[28X[128X[104X141[4X[28Xa homological spectral sequence at bidegrees[128X[104X142[4X[28X[ [ -1 .. 0 ], [ 0 .. 1 ] ][128X[104X143[4X[28X---------[128X[104X144[4X[28XLevel 0:[128X[104X145[4X[28X[128X[104X146[4X[28X * *[128X[104X147[4X[28X * *[128X[104X148[4X[28X---------[128X[104X149[4X[28XLevel 1:[128X[104X150[4X[28X[128X[104X151[4X[28X * *[128X[104X152[4X[28X . s[128X[104X153[4X[28X---------[128X[104X154[4X[28XLevel 2:[128X[104X155[4X[28X[128X[104X156[4X[28X s .[128X[104X157[4X[28X . s[128X[104X158[4X[25Xgap>[125X [27Xm := IsomorphismOfFiltration( filt );[127X[104X159[4X[28X<A non-zero isomorphism of left modules>[128X[104X160[4X[25Xgap>[125X [27XIsIdenticalObj( Range( m ), M );[127X[104X161[4X[28Xtrue[128X[104X162[4X[25Xgap>[125X [27XSource( m );[127X[104X163[4X[28X<A non-torsion left module presented by 2 relations for 3 generators (locked)>[128X[104X164[4X[25Xgap>[125X [27XDisplay( last );[127X[104X165[4X[28X[ [ 0, 2, 0 ],[128X[104X166[4X[28X [ 0, 0, 12 ] ][128X[104X167[4X[28X[128X[104X168[4X[28XCokernel of the map[128X[104X169[4X[28X[128X[104X170[4X[28XZ^(1x2) --> Z^(1x3),[128X[104X171[4X[28X[128X[104X172[4X[28Xcurrently represented by the above matrix[128X[104X173[4X[25Xgap>[125X [27XDisplay( filt );[127X[104X174[4X[28XDegree 0:[128X[104X175[4X[28X[128X[104X176[4X[28XZ^(1 x 1)[128X[104X177[4X[28X----------[128X[104X178[4X[28XDegree -1:[128X[104X179[4X[28X[128X[104X180[4X[28XZ/< 2 > + Z/< 12 > [128X[104X181[4X[32X[104X182183184[1X13.3 [33X[0;0YTorExt-Grothendieck[133X[101X185186[33X[0;0YThis corresponds to Example B.5 in [Bar].[133X187188[4X[32X Example [32X[104X189[4X[25Xgap>[125X [27XZZ := HomalgRingOfIntegers( );[127X[104X190[4X[28XZ[128X[104X191[4X[25Xgap>[125X [27Ximat := HomalgMatrix( "[ \[127X[104X192[4X[25X>[125X [27X 262, -33, 75, -40, \[127X[104X193[4X[25X>[125X [27X 682, -86, 196, -104, \[127X[104X194[4X[25X>[125X [27X 1186, -151, 341, -180, \[127X[104X195[4X[25X>[125X [27X-1932, 248, -556, 292, \[127X[104X196[4X[25X>[125X [27X 1018, -127, 293, -156 \[127X[104X197[4X[25X>[125X [27X]", 5, 4, ZZ );[127X[104X198[4X[28X<A 5 x 4 matrix over an internal ring>[128X[104X199[4X[25Xgap>[125X [27XM := LeftPresentation( imat );[127X[104X200[4X[28X<A left module presented by 5 relations for 4 generators>[128X[104X201[4X[25Xgap>[125X [27XF := InsertObjectInMultiFunctor( Functor_TensorProduct_for_fp_modules, 2, M, "TensorM" );[127X[104X202[4X[28X<The functor TensorM for f.p. modules and their maps over computable rings>[128X[104X203[4X[25Xgap>[125X [27XG := LeftDualizingFunctor( ZZ );;[127X[104X204[4X[25Xgap>[125X [27XII_E := GrothendieckSpectralSequence( F, G, M );[127X[104X205[4X[28X<A stable cohomological spectral sequence with sheets at levels [128X[104X206[4X[28X[ 0 .. 2 ] each consisting of left modules at bidegrees [ -1 .. 0 ]x[128X[104X207[4X[28X[ 0 .. 1 ]>[128X[104X208[4X[25Xgap>[125X [27XDisplay( II_E );[127X[104X209[4X[28XThe associated transposed spectral sequence:[128X[104X210[4X[28X[128X[104X211[4X[28Xa cohomological spectral sequence at bidegrees[128X[104X212[4X[28X[ [ 0 .. 1 ], [ -1 .. 0 ] ][128X[104X213[4X[28X---------[128X[104X214[4X[28XLevel 0:[128X[104X215[4X[28X[128X[104X216[4X[28X * *[128X[104X217[4X[28X * *[128X[104X218[4X[28X---------[128X[104X219[4X[28XLevel 1:[128X[104X220[4X[28X[128X[104X221[4X[28X * *[128X[104X222[4X[28X . .[128X[104X223[4X[28X---------[128X[104X224[4X[28XLevel 2:[128X[104X225[4X[28X[128X[104X226[4X[28X s s[128X[104X227[4X[28X . .[128X[104X228[4X[28X[128X[104X229[4X[28XNow the spectral sequence of the bicomplex:[128X[104X230[4X[28X[128X[104X231[4X[28Xa cohomological spectral sequence at bidegrees[128X[104X232[4X[28X[ [ -1 .. 0 ], [ 0 .. 1 ] ][128X[104X233[4X[28X---------[128X[104X234[4X[28XLevel 0:[128X[104X235[4X[28X[128X[104X236[4X[28X * *[128X[104X237[4X[28X * *[128X[104X238[4X[28X---------[128X[104X239[4X[28XLevel 1:[128X[104X240[4X[28X[128X[104X241[4X[28X * *[128X[104X242[4X[28X . s[128X[104X243[4X[28X---------[128X[104X244[4X[28XLevel 2:[128X[104X245[4X[28X[128X[104X246[4X[28X s s[128X[104X247[4X[28X . s[128X[104X248[4X[25Xgap>[125X [27Xfilt := FiltrationBySpectralSequence( II_E, 0 );[127X[104X249[4X[28X<A descending filtration with degrees [ -1 .. 0 ] and graded parts:[128X[104X250[4X[28X[128X[104X251[4X[28X-1: <A non-zero left module presented by yet unknown relations for 9 generator\[128X[104X252[4X[28Xs>[128X[104X253[4X[28X[128X[104X254[4X[28X0: <A non-zero left module presented by yet unknown relations for 4 generators\[128X[104X255[4X[28X>[128X[104X256[4X[28Xof[128X[104X257[4X[28X<A left module presented by yet unknown relations for 29 generators>>[128X[104X258[4X[25Xgap>[125X [27XByASmallerPresentation( filt );[127X[104X259[4X[28X<A descending filtration with degrees [ -1 .. 0 ] and graded parts:[128X[104X260[4X[28X -1: <A non-zero torsion left module presented by 4 relations[128X[104X261[4X[28X for 4 generators>[128X[104X262[4X[28X 0: <A rank 1 left module presented by 2 relations for 3 generators>[128X[104X263[4X[28Xof[128X[104X264[4X[28X<A rank 1 left module presented by 6 relations for 7 generators>>[128X[104X265[4X[25Xgap>[125X [27Xm := IsomorphismOfFiltration( filt );[127X[104X266[4X[28X<A non-zero isomorphism of left modules>[128X[104X267[4X[32X[104X268269270[1X13.4 [33X[0;0YTorExt[133X[101X271272[33X[0;0YThis corresponds to Example B.6 in [Bar].[133X273274[4X[32X Example [32X[104X275[4X[25Xgap>[125X [27XZZ := HomalgRingOfIntegers( );[127X[104X276[4X[28XZ[128X[104X277[4X[25Xgap>[125X [27Ximat := HomalgMatrix( "[ \[127X[104X278[4X[25X>[125X [27X 262, -33, 75, -40, \[127X[104X279[4X[25X>[125X [27X 682, -86, 196, -104, \[127X[104X280[4X[25X>[125X [27X 1186, -151, 341, -180, \[127X[104X281[4X[25X>[125X [27X-1932, 248, -556, 292, \[127X[104X282[4X[25X>[125X [27X 1018, -127, 293, -156 \[127X[104X283[4X[25X>[125X [27X]", 5, 4, ZZ );[127X[104X284[4X[28X<A 5 x 4 matrix over an internal ring>[128X[104X285[4X[25Xgap>[125X [27XM := LeftPresentation( imat );[127X[104X286[4X[28X<A left module presented by 5 relations for 4 generators>[128X[104X287[4X[25Xgap>[125X [27XP := Resolution( M );[127X[104X288[4X[28X<A non-zero right acyclic complex containing a single morphism of left modules\[128X[104X289[4X[28X at degrees [ 0 .. 1 ]>[128X[104X290[4X[25Xgap>[125X [27XGP := Hom( P );[127X[104X291[4X[28X<A non-zero acyclic cocomplex containing a single morphism of right modules at\[128X[104X292[4X[28X degrees [ 0 .. 1 ]>[128X[104X293[4X[25Xgap>[125X [27XFGP := GP * P;[127X[104X294[4X[28X<A non-zero acyclic cocomplex containing a single morphism of left complexes a\[128X[104X295[4X[28Xt degrees [ 0 .. 1 ]>[128X[104X296[4X[25Xgap>[125X [27XBC := HomalgBicomplex( FGP );[127X[104X297[4X[28X<A non-zero bicocomplex containing left modules at bidegrees [ 0 .. 1 ]x[128X[104X298[4X[28X[ -1 .. 0 ]>[128X[104X299[4X[25Xgap>[125X [27Xp_degrees := ObjectDegreesOfBicomplex( BC )[1];[127X[104X300[4X[28X[ 0, 1 ][128X[104X301[4X[25Xgap>[125X [27XII_E := SecondSpectralSequenceWithFiltration( BC, p_degrees );[127X[104X302[4X[28X<A stable cohomological spectral sequence with sheets at levels [128X[104X303[4X[28X[ 0 .. 2 ] each consisting of left modules at bidegrees [ -1 .. 0 ]x[128X[104X304[4X[28X[ 0 .. 1 ]>[128X[104X305[4X[25Xgap>[125X [27XDisplay( II_E );[127X[104X306[4X[28XThe associated transposed spectral sequence:[128X[104X307[4X[28X[128X[104X308[4X[28Xa cohomological spectral sequence at bidegrees[128X[104X309[4X[28X[ [ 0 .. 1 ], [ -1 .. 0 ] ][128X[104X310[4X[28X---------[128X[104X311[4X[28XLevel 0:[128X[104X312[4X[28X[128X[104X313[4X[28X * *[128X[104X314[4X[28X * *[128X[104X315[4X[28X---------[128X[104X316[4X[28XLevel 1:[128X[104X317[4X[28X[128X[104X318[4X[28X * *[128X[104X319[4X[28X . .[128X[104X320[4X[28X---------[128X[104X321[4X[28XLevel 2:[128X[104X322[4X[28X[128X[104X323[4X[28X s s[128X[104X324[4X[28X . .[128X[104X325[4X[28X[128X[104X326[4X[28XNow the spectral sequence of the bicomplex:[128X[104X327[4X[28X[128X[104X328[4X[28Xa cohomological spectral sequence at bidegrees[128X[104X329[4X[28X[ [ -1 .. 0 ], [ 0 .. 1 ] ][128X[104X330[4X[28X---------[128X[104X331[4X[28XLevel 0:[128X[104X332[4X[28X[128X[104X333[4X[28X * *[128X[104X334[4X[28X * *[128X[104X335[4X[28X---------[128X[104X336[4X[28XLevel 1:[128X[104X337[4X[28X[128X[104X338[4X[28X * *[128X[104X339[4X[28X * *[128X[104X340[4X[28X---------[128X[104X341[4X[28XLevel 2:[128X[104X342[4X[28X[128X[104X343[4X[28X s s[128X[104X344[4X[28X . s[128X[104X345[4X[25Xgap>[125X [27Xfilt := FiltrationBySpectralSequence( II_E, 0 );[127X[104X346[4X[28X<A descending filtration with degrees [ -1 .. 0 ] and graded parts:[128X[104X347[4X[28X[128X[104X348[4X[28X-1: <A non-zero torsion left module presented by yet unknown relations for[128X[104X349[4X[28X 10 generators>[128X[104X350[4X[28X 0: <A rank 1 left module presented by 3 relations for 4 generators>[128X[104X351[4X[28Xof[128X[104X352[4X[28X<A left module presented by yet unknown relations for 13 generators>>[128X[104X353[4X[25Xgap>[125X [27XByASmallerPresentation( filt );[127X[104X354[4X[28X<A descending filtration with degrees [ -1 .. 0 ] and graded parts:[128X[104X355[4X[28X -1: <A non-zero torsion left module presented by 4 relations[128X[104X356[4X[28X for 4 generators>[128X[104X357[4X[28X 0: <A rank 1 left module presented by 2 relations for 3 generators>[128X[104X358[4X[28Xof[128X[104X359[4X[28X<A rank 1 left module presented by 6 relations for 7 generators>>[128X[104X360[4X[25Xgap>[125X [27Xm := IsomorphismOfFiltration( filt );[127X[104X361[4X[28X<A non-zero isomorphism of left modules>[128X[104X362[4X[32X[104X363364365366