CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutSign UpSign In

Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.

| Download

GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it

Views: 418346
1
2
13 Examples
3
4
5
13.1 ExtExt
6
7
This corresponds to Example B.2 in [Bar].
8
9
 Example 
10
gap> ZZ := HomalgRingOfIntegers( );
11
Z
12
gap> imat := HomalgMatrix( "[ \
13
>  262, -33, 75, -40, \
14
>  682, -86, 196, -104, \
15
>  1186, -151, 341, -180, \
16
> -1932, 248, -556, 292, \
17
>  1018, -127, 293, -156 \
18
> ]", 5, 4, ZZ );
19
<A 5 x 4 matrix over an internal ring>
20
gap> M := LeftPresentation( imat );
21
<A left module presented by 5 relations for 4 generators>
22
gap> N := Hom( ZZ, M );
23
<A rank 1 right module on 4 generators satisfying yet unknown relations>
24
gap> F := InsertObjectInMultiFunctor( Functor_Hom_for_fp_modules, 2, N, "TensorN" );
25
<The functor TensorN for f.p. modules and their maps over computable rings>
26
gap> G := LeftDualizingFunctor( ZZ );;
27
gap> II_E := GrothendieckSpectralSequence( F, G, M );
28
<A stable homological spectral sequence with sheets at levels 
29
[ 0 .. 2 ] each consisting of left modules at bidegrees [ -1 .. 0 ]x
30
[ 0 .. 1 ]>
31
gap> Display( II_E );
32
The associated transposed spectral sequence:
33

34
a homological spectral sequence at bidegrees
35
[ [ 0 .. 1 ], [ -1 .. 0 ] ]
36
---------
37
Level 0:
38

39
 * *
40
 * *
41
---------
42
Level 1:
43

44
 * *
45
 . .
46
---------
47
Level 2:
48

49
 s s
50
 . .
51

52
Now the spectral sequence of the bicomplex:
53

54
a homological spectral sequence at bidegrees
55
[ [ -1 .. 0 ], [ 0 .. 1 ] ]
56
---------
57
Level 0:
58

59
 * *
60
 * *
61
---------
62
Level 1:
63

64
 * *
65
 . s
66
---------
67
Level 2:
68

69
 s s
70
 . s
71
gap> filt := FiltrationBySpectralSequence( II_E, 0 );
72
<An ascending filtration with degrees [ -1 .. 0 ] and graded parts:
73
 0: <A non-torsion left module presented by 3 relations for 4 generators>
74
 -1: <A non-zero left module presented by 33 relations for 8 generators>
75
of
76
<A non-zero left module presented by 27 relations for 19 generators>>
77
gap> ByASmallerPresentation( filt );
78
<An ascending filtration with degrees [ -1 .. 0 ] and graded parts:
79
 0: <A rank 1 left module presented by 2 relations for 3 generators>
80
 
81
-1: <A non-zero torsion left module presented by 6 relations for 6 generators>
82
of
83
<A rank 1 left module presented by 8 relations for 9 generators>>
84
gap> m := IsomorphismOfFiltration( filt );
85
<A non-zero isomorphism of left modules>
86

87
88
89
13.2 Purity
90
91
This corresponds to Example B.3 in [Bar].
92
93
 Example 
94
gap> ZZ := HomalgRingOfIntegers( );
95
Z
96
gap> imat := HomalgMatrix( "[ \
97
>  262, -33, 75, -40, \
98
>  682, -86, 196, -104, \
99
>  1186, -151, 341, -180, \
100
> -1932, 248, -556, 292, \
101
>  1018, -127, 293, -156 \
102
> ]", 5, 4, ZZ );
103
<A 5 x 4 matrix over an internal ring>
104
gap> M := LeftPresentation( imat );
105
<A left module presented by 5 relations for 4 generators>
106
gap> filt := PurityFiltration( M );
107
<The ascending purity filtration with degrees [ -1 .. 0 ] and graded parts:
108
 0: <A free left module of rank 1 on a free generator>
109
 
110
-1: <A non-zero torsion left module presented by 2 relations for 2 generators>
111
of
112
<A non-pure rank 1 left module presented by 2 relations for 3 generators>>
113
gap> M;
114
<A non-pure rank 1 left module presented by 2 relations for 3 generators>
115
gap> II_E := SpectralSequence( filt );
116
<A stable homological spectral sequence with sheets at levels 
117
[ 0 .. 2 ] each consisting of left modules at bidegrees [ -1 .. 0 ]x
118
[ 0 .. 1 ]>
119
gap> Display( II_E );
120
The associated transposed spectral sequence:
121

122
a homological spectral sequence at bidegrees
123
[ [ 0 .. 1 ], [ -1 .. 0 ] ]
124
---------
125
Level 0:
126

127
 * *
128
 * *
129
---------
130
Level 1:
131

132
 * *
133
 . .
134
---------
135
Level 2:
136

137
 s .
138
 . .
139

140
Now the spectral sequence of the bicomplex:
141

142
a homological spectral sequence at bidegrees
143
[ [ -1 .. 0 ], [ 0 .. 1 ] ]
144
---------
145
Level 0:
146

147
 * *
148
 * *
149
---------
150
Level 1:
151

152
 * *
153
 . s
154
---------
155
Level 2:
156

157
 s .
158
 . s
159
gap> m := IsomorphismOfFiltration( filt );
160
<A non-zero isomorphism of left modules>
161
gap> IsIdenticalObj( Range( m ), M );
162
true
163
gap> Source( m );
164
<A non-torsion left module presented by 2 relations for 3 generators (locked)>
165
gap> Display( last );
166
[ [ 0, 2, 0 ],
167
 [ 0, 0, 12 ] ]
168

169
Cokernel of the map
170

171
Z^(1x2) --> Z^(1x3),
172

173
currently represented by the above matrix
174
gap> Display( filt );
175
Degree 0:
176

177
Z^(1 x 1)
178
----------
179
Degree -1:
180

181
Z/< 2 > + Z/< 12 > 
182

183
184
185
13.3 TorExt-Grothendieck
186
187
This corresponds to Example B.5 in [Bar].
188
189
 Example 
190
gap> ZZ := HomalgRingOfIntegers( );
191
Z
192
gap> imat := HomalgMatrix( "[ \
193
>  262, -33, 75, -40, \
194
>  682, -86, 196, -104, \
195
>  1186, -151, 341, -180, \
196
> -1932, 248, -556, 292, \
197
>  1018, -127, 293, -156 \
198
> ]", 5, 4, ZZ );
199
<A 5 x 4 matrix over an internal ring>
200
gap> M := LeftPresentation( imat );
201
<A left module presented by 5 relations for 4 generators>
202
gap> F := InsertObjectInMultiFunctor( Functor_TensorProduct_for_fp_modules, 2, M, "TensorM" );
203
<The functor TensorM for f.p. modules and their maps over computable rings>
204
gap> G := LeftDualizingFunctor( ZZ );;
205
gap> II_E := GrothendieckSpectralSequence( F, G, M );
206
<A stable cohomological spectral sequence with sheets at levels 
207
[ 0 .. 2 ] each consisting of left modules at bidegrees [ -1 .. 0 ]x
208
[ 0 .. 1 ]>
209
gap> Display( II_E );
210
The associated transposed spectral sequence:
211

212
a cohomological spectral sequence at bidegrees
213
[ [ 0 .. 1 ], [ -1 .. 0 ] ]
214
---------
215
Level 0:
216

217
 * *
218
 * *
219
---------
220
Level 1:
221

222
 * *
223
 . .
224
---------
225
Level 2:
226

227
 s s
228
 . .
229

230
Now the spectral sequence of the bicomplex:
231

232
a cohomological spectral sequence at bidegrees
233
[ [ -1 .. 0 ], [ 0 .. 1 ] ]
234
---------
235
Level 0:
236

237
 * *
238
 * *
239
---------
240
Level 1:
241

242
 * *
243
 . s
244
---------
245
Level 2:
246

247
 s s
248
 . s
249
gap> filt := FiltrationBySpectralSequence( II_E, 0 );
250
<A descending filtration with degrees [ -1 .. 0 ] and graded parts:
251

252
-1: <A non-zero left module presented by yet unknown relations for 9 generator\
253
s>
254

255
0: <A non-zero left module presented by yet unknown relations for 4 generators\
256
>
257
of
258
<A left module presented by yet unknown relations for 29 generators>>
259
gap> ByASmallerPresentation( filt );
260
<A descending filtration with degrees [ -1 .. 0 ] and graded parts:
261
 -1: <A non-zero torsion left module presented by 4 relations
262
 for 4 generators>
263
 0: <A rank 1 left module presented by 2 relations for 3 generators>
264
of
265
<A rank 1 left module presented by 6 relations for 7 generators>>
266
gap> m := IsomorphismOfFiltration( filt );
267
<A non-zero isomorphism of left modules>
268

269
270
271
13.4 TorExt
272
273
This corresponds to Example B.6 in [Bar].
274
275
 Example 
276
gap> ZZ := HomalgRingOfIntegers( );
277
Z
278
gap> imat := HomalgMatrix( "[ \
279
>  262, -33, 75, -40, \
280
>  682, -86, 196, -104, \
281
>  1186, -151, 341, -180, \
282
> -1932, 248, -556, 292, \
283
>  1018, -127, 293, -156 \
284
> ]", 5, 4, ZZ );
285
<A 5 x 4 matrix over an internal ring>
286
gap> M := LeftPresentation( imat );
287
<A left module presented by 5 relations for 4 generators>
288
gap> P := Resolution( M );
289
<A non-zero right acyclic complex containing a single morphism of left modules\
290
 at degrees [ 0 .. 1 ]>
291
gap> GP := Hom( P );
292
<A non-zero acyclic cocomplex containing a single morphism of right modules at\
293
 degrees [ 0 .. 1 ]>
294
gap> FGP := GP * P;
295
<A non-zero acyclic cocomplex containing a single morphism of left complexes a\
296
t degrees [ 0 .. 1 ]>
297
gap> BC := HomalgBicomplex( FGP );
298
<A non-zero bicocomplex containing left modules at bidegrees [ 0 .. 1 ]x
299
[ -1 .. 0 ]>
300
gap> p_degrees := ObjectDegreesOfBicomplex( BC )[1];
301
[ 0, 1 ]
302
gap> II_E := SecondSpectralSequenceWithFiltration( BC, p_degrees );
303
<A stable cohomological spectral sequence with sheets at levels 
304
[ 0 .. 2 ] each consisting of left modules at bidegrees [ -1 .. 0 ]x
305
[ 0 .. 1 ]>
306
gap> Display( II_E );
307
The associated transposed spectral sequence:
308

309
a cohomological spectral sequence at bidegrees
310
[ [ 0 .. 1 ], [ -1 .. 0 ] ]
311
---------
312
Level 0:
313

314
 * *
315
 * *
316
---------
317
Level 1:
318

319
 * *
320
 . .
321
---------
322
Level 2:
323

324
 s s
325
 . .
326

327
Now the spectral sequence of the bicomplex:
328

329
a cohomological spectral sequence at bidegrees
330
[ [ -1 .. 0 ], [ 0 .. 1 ] ]
331
---------
332
Level 0:
333

334
 * *
335
 * *
336
---------
337
Level 1:
338

339
 * *
340
 * *
341
---------
342
Level 2:
343

344
 s s
345
 . s
346
gap> filt := FiltrationBySpectralSequence( II_E, 0 );
347
<A descending filtration with degrees [ -1 .. 0 ] and graded parts:
348

349
-1: <A non-zero torsion left module presented by yet unknown relations for
350
 10 generators>
351
 0: <A rank 1 left module presented by 3 relations for 4 generators>
352
of
353
<A left module presented by yet unknown relations for 13 generators>>
354
gap> ByASmallerPresentation( filt );
355
<A descending filtration with degrees [ -1 .. 0 ] and graded parts:
356
 -1: <A non-zero torsion left module presented by 4 relations
357
 for 4 generators>
358
 0: <A rank 1 left module presented by 2 relations for 3 generators>
359
of
360
<A rank 1 left module presented by 6 relations for 7 generators>>
361
gap> m := IsomorphismOfFiltration( filt );
362
<A non-zero isomorphism of left modules>
363

364
365
366