Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
Project: cocalc-sagemath-dev-slelievre
Views: 4183461[1X5 [33X[0;0YRelations[133X[101X23[33X[0;0YA finite presentation of a module is given by a finite set of generators and4a finite set of relations among these generators. In [5Xhomalg[105X a set of5relations of a left/right module is given by a matrix [3Xrel[103X, the rows/columns6of which are interpreted as relations among [22Xn[122X generators, [22Xn[122X being the number7of columns/rows of the matrix [3Xrel[103X.[133X89[33X[0;0YThe data structure of a module in [5Xhomalg[105X is designed to contain not only one10but several sets of relations (together with corresponding sets of11generators (--> Chapter [14X6[114X)). The different sets of relations are linked with12so-called transition matrices (--> Chapter [14X7[114X).[133X1314[33X[0;0YThe relations of a [5Xhomalg[105X module are evaluated in a lazy way. This avoids15unnecessary computations.[133X161718[1X5.1 [33X[0;0YRelations: Categories and Representations[133X[101X1920[1X5.1-1 IsHomalgRelations[101X2122[29X[2XIsHomalgRelations[102X( [3Xrel[103X ) [32X Category23[6XReturns:[106X [33X[0;10Y[10Xtrue[110X or [10Xfalse[110X[133X2425[33X[0;0YThe [5XGAP[105X category of [5Xhomalg[105X relations.[133X2627[1X5.1-2 IsHomalgRelationsOfLeftModule[101X2829[29X[2XIsHomalgRelationsOfLeftModule[102X( [3Xrel[103X ) [32X Category30[6XReturns:[106X [33X[0;10Y[10Xtrue[110X or [10Xfalse[110X[133X3132[33X[0;0YThe [5XGAP[105X category of [5Xhomalg[105X relations of a left module.[133X3334[33X[0;0Y(It is a subcategory of the [5XGAP[105X category [10XIsHomalgRelations[110X.)[133X3536[1X5.1-3 IsHomalgRelationsOfRightModule[101X3738[29X[2XIsHomalgRelationsOfRightModule[102X( [3Xrel[103X ) [32X Category39[6XReturns:[106X [33X[0;10Y[10Xtrue[110X or [10Xfalse[110X[133X4041[33X[0;0YThe [5XGAP[105X category of [5Xhomalg[105X relations of a right module.[133X4243[33X[0;0Y(It is a subcategory of the [5XGAP[105X category [10XIsHomalgRelations[110X.)[133X4445[1X5.1-4 IsRelationsOfFinitelyPresentedModuleRep[101X4647[29X[2XIsRelationsOfFinitelyPresentedModuleRep[102X( [3Xrel[103X ) [32X Representation48[6XReturns:[106X [33X[0;10Y[10Xtrue[110X or [10Xfalse[110X[133X4950[33X[0;0YThe [5XGAP[105X representation of a finite set of relations of a finitely presented51[5Xhomalg[105X module.[133X5253[33X[0;0Y(It is a representation of the [5XGAP[105X category [2XIsHomalgRelations[102X ([14X5.1-1[114X))[133X545556[1X5.2 [33X[0;0YRelations: Constructors[133X[101X575859[1X5.3 [33X[0;0YRelations: Properties[133X[101X6061[1X5.3-1 CanBeUsedToDecideZeroEffectively[101X6263[29X[2XCanBeUsedToDecideZeroEffectively[102X( [3Xrel[103X ) [32X property64[6XReturns:[106X [33X[0;10Y[10Xtrue[110X or [10Xfalse[110X[133X6566[33X[0;0YCheck if the [5Xhomalg[105X set of relations [3Xrel[103X can be used for normal form67reductions.[133X68[33X[0;0Y(no method installed)[133X6970[1X5.3-2 IsInjectivePresentation[101X7172[29X[2XIsInjectivePresentation[102X( [3Xrel[103X ) [32X property73[6XReturns:[106X [33X[0;10Y[10Xtrue[110X or [10Xfalse[110X[133X7475[33X[0;0YCheck if the [5Xhomalg[105X set of relations [3Xrel[103X has zero syzygies.[133X767778[1X5.4 [33X[0;0YRelations: Attributes[133X[101X798081[1X5.5 [33X[0;0YRelations: Operations and Functions[133X[101X82838485