Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
Project: cocalc-sagemath-dev-slelievre
Views: 4183461[1X6 [33X[0;0YGenerators[133X[101X23[33X[0;0YTo present a left/right module it suffices to take a matrix [3Xrel[103X and4interpret its rows/columns as relations among [22Xn[122X [13Xabstract[113X generators, where [22Xn[122X5is the number of columns/rows of [3Xrel[103X. Only that these abstract generators6are useless when it comes to specific modules like modules of homomorphisms,7where one expects the generators to be maps between modules. For this reason8a presentation of a module in [5Xhomalg[105X is not merely a matrix of relations,9but together with a set of generators.[133X1011[33X[0;0YIn [5Xhomalg[105X a set of generators of a left/right module is given by a matrix12[3Xgen[103X with rows/columns being interpreted as the generators.[133X1314[33X[0;0YThe data structure of a module in [5Xhomalg[105X is designed to contain not only one15but several sets of generators (together with their sets of relations (-->16Chapter [14X5[114X)). The different sets of generators are linked with so-called17transition matrices (--> Chapter [14X7[114X).[133X181920[1X6.1 [33X[0;0YGenerators: Categories and Representations[133X[101X2122[1X6.1-1 IsHomalgGenerators[101X2324[29X[2XIsHomalgGenerators[102X( [3Xrel[103X ) [32X Category25[6XReturns:[106X [33X[0;10Y[10Xtrue[110X or [10Xfalse[110X[133X2627[33X[0;0YThe [5XGAP[105X category of [5Xhomalg[105X generators.[133X2829[1X6.1-2 IsHomalgGeneratorsOfLeftModule[101X3031[29X[2XIsHomalgGeneratorsOfLeftModule[102X( [3Xrel[103X ) [32X Category32[6XReturns:[106X [33X[0;10Y[10Xtrue[110X or [10Xfalse[110X[133X3334[33X[0;0YThe [5XGAP[105X category of [5Xhomalg[105X generators of a left module.[133X3536[33X[0;0Y(It is a subcategory of the [5XGAP[105X category [10XIsHomalgGenerators[110X.)[133X3738[1X6.1-3 IsHomalgGeneratorsOfRightModule[101X3940[29X[2XIsHomalgGeneratorsOfRightModule[102X( [3Xrel[103X ) [32X Category41[6XReturns:[106X [33X[0;10Y[10Xtrue[110X or [10Xfalse[110X[133X4243[33X[0;0YThe [5XGAP[105X category of [5Xhomalg[105X generators of a right module.[133X4445[33X[0;0Y(It is a subcategory of the [5XGAP[105X category [10XIsHomalgGenerators[110X.)[133X4647[1X6.1-4 IsGeneratorsOfModuleRep[101X4849[29X[2XIsGeneratorsOfModuleRep[102X( [3Xrel[103X ) [32X Representation50[6XReturns:[106X [33X[0;10Y[10Xtrue[110X or [10Xfalse[110X[133X5152[33X[0;0YThe [5XGAP[105X representation of a finite set of generators of a [5Xhomalg[105X module.[133X5354[33X[0;0Y(It is a representation of the [5XGAP[105X category [2XIsHomalgGenerators[102X ([14X6.1-1[114X))[133X5556[4X[32X Code [32X[104X57[4XDeclareRepresentation( "IsGeneratorsOfModuleRep",[104X58[4X IsHomalgGenerators,[104X59[4X [ "generators" ] );[104X60[4X[32X[104X6162[1X6.1-5 IsGeneratorsOfFinitelyGeneratedModuleRep[101X6364[29X[2XIsGeneratorsOfFinitelyGeneratedModuleRep[102X( [3Xrel[103X ) [32X Representation65[6XReturns:[106X [33X[0;10Y[10Xtrue[110X or [10Xfalse[110X[133X6667[33X[0;0YThe [5XGAP[105X representation of a finite set of generators of a finitely generated68[5Xhomalg[105X module.[133X6970[33X[0;0Y(It is a representation of the [5XGAP[105X representation [2XIsGeneratorsOfModuleRep[102X71([14X6.1-4[114X))[133X7273[4X[32X Code [32X[104X74[4XDeclareRepresentation( "IsGeneratorsOfFinitelyGeneratedModuleRep",[104X75[4X IsGeneratorsOfModuleRep,[104X76[4X [ "generators", "relations_of_hullmodule" ] );[104X77[4X[32X[104X787980[1X6.2 [33X[0;0YGenerators: Constructors[133X[101X818283[1X6.3 [33X[0;0YGenerators: Properties[133X[101X8485[1X6.3-1 IsReduced[101X8687[29X[2XIsReduced[102X( [3Xgen[103X ) [32X property88[6XReturns:[106X [33X[0;10Y[10Xtrue[110X or [10Xfalse[110X[133X8990[33X[0;0YCheck if the [5Xhomalg[105X set of generators [3Xgen[103X is marked reduced.[133X91[33X[0;0Y(no method installed)[133X929394[1X6.4 [33X[0;0YGenerators: Attributes[133X[101X9596[1X6.4-1 ProcedureToReadjustGenerators[101X9798[29X[2XProcedureToReadjustGenerators[102X( [3Xgen[103X ) [32X attribute99[6XReturns:[106X [33X[0;10Ya function[133X100101[33X[0;0YA function that takes the rows/columns of [3Xgen[103X and returns an object (e.g. a102matrix) that can be interpreted as a generator (this is important for103modules of homomorphisms).[133X104105106[1X6.5 [33X[0;0YGenerators: Operations and Functions[133X[101X107108109110