Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
Project: cocalc-sagemath-dev-slelievre
Views: 418346## <#GAPDoc Label="Purity"> ## <Section Label="Purity"> ## <Heading>Purity</Heading> ## This corresponds to Example B.3 in <Cite Key="BaSF"/>. ## <Example><![CDATA[ ## gap> ZZ := HomalgRingOfIntegers( ); ## Z ## gap> imat := HomalgMatrix( "[ \ ## > 262, -33, 75, -40, \ ## > 682, -86, 196, -104, \ ## > 1186, -151, 341, -180, \ ## > -1932, 248, -556, 292, \ ## > 1018, -127, 293, -156 \ ## > ]", 5, 4, ZZ ); ## <A 5 x 4 matrix over an internal ring> ## gap> M := LeftPresentation( imat ); ## <A left module presented by 5 relations for 4 generators> ## gap> filt := PurityFiltration( M ); ## <The ascending purity filtration with degrees [ -1 .. 0 ] and graded parts: ## 0: <A free left module of rank 1 on a free generator> ## ## -1: <A non-zero torsion left module presented by 2 relations for 2 generators> ## of ## <A non-pure rank 1 left module presented by 2 relations for 3 generators>> ## gap> M; ## <A non-pure rank 1 left module presented by 2 relations for 3 generators> ## gap> II_E := SpectralSequence( filt ); ## <A stable homological spectral sequence with sheets at levels ## [ 0 .. 2 ] each consisting of left modules at bidegrees [ -1 .. 0 ]x ## [ 0 .. 1 ]> ## gap> Display( II_E ); ## The associated transposed spectral sequence: ## ## a homological spectral sequence at bidegrees ## [ [ 0 .. 1 ], [ -1 .. 0 ] ] ## --------- ## Level 0: ## ## * * ## * * ## --------- ## Level 1: ## ## * * ## . . ## --------- ## Level 2: ## ## s . ## . . ## ## Now the spectral sequence of the bicomplex: ## ## a homological spectral sequence at bidegrees ## [ [ -1 .. 0 ], [ 0 .. 1 ] ] ## --------- ## Level 0: ## ## * * ## * * ## --------- ## Level 1: ## ## * * ## . s ## --------- ## Level 2: ## ## s . ## . s ## gap> m := IsomorphismOfFiltration( filt ); ## <A non-zero isomorphism of left modules> ## gap> IsIdenticalObj( Range( m ), M ); ## true ## gap> Source( m ); ## <A non-torsion left module presented by 2 relations for 3 generators (locked)> ## gap> Display( last ); ## [ [ 0, 2, 0 ], ## [ 0, 0, 12 ] ] ## ## Cokernel of the map ## ## Z^(1x2) --> Z^(1x3), ## ## currently represented by the above matrix ## gap> Display( filt ); ## Degree 0: ## ## Z^(1 x 1) ## ---------- ## Degree -1: ## ## Z/< 2 > + Z/< 12 > ## ]]></Example> ## </Section> ## <#/GAPDoc> Read( "homalg.g" ); filt := PurityFiltration( M ); II_E := SpectralSequence( filt ); m := IsomorphismOfFiltration( filt );