Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
Project: cocalc-sagemath-dev-slelievre
Views: 418346## <#GAPDoc Label="RHom_Z"> ## <Example><![CDATA[ ## gap> ZZ := HomalgRingOfIntegers( ); ## Z ## gap> m := HomalgMatrix( [ [ 8, 0 ], [ 0, 2 ] ], ZZ );; ## gap> M := LeftPresentation( m ); ## <A left module presented by 2 relations for 2 generators> ## gap> Display( M ); ## Z/< 8 > + Z/< 2 > ## gap> M; ## <A torsion left module presented by 2 relations for 2 generators> ## gap> a := HomalgMatrix( [ [ 2, 0 ] ], ZZ );; ## gap> alpha := HomalgMap( a, "free", M ); ## <A homomorphism of left modules> ## gap> pi := CokernelEpi( alpha ); ## <An epimorphism of left modules> ## gap> Display( pi ); ## [ [ 1, 0 ], ## [ 0, 1 ] ] ## ## the map is currently represented by the above 2 x 2 matrix ## gap> iota := KernelEmb( pi ); ## <A monomorphism of left modules> ## gap> Display( iota ); ## [ [ 2, 0 ] ] ## ## the map is currently represented by the above 1 x 2 matrix ## gap> N := Kernel( pi ); ## <A cyclic torsion left module presented by yet unknown relations for a cyclic \ ## generator> ## gap> Display( N ); ## Z/< 4 > ## gap> C := HomalgComplex( pi ); ## <A left acyclic complex containing a single morphism of left modules at degree\ ## s [ 0 .. 1 ]> ## gap> Add( C, iota ); ## gap> ByASmallerPresentation( C ); ## <A non-zero short exact sequence containing ## 2 morphisms of left modules at degrees [ 0 .. 2 ]> ## gap> Display( C ); ## ------------------------- ## at homology degree: 2 ## Z/< 4 > ## ------------------------- ## [ [ 0, 6 ] ] ## ## the map is currently represented by the above 1 x 2 matrix ## ------------v------------ ## at homology degree: 1 ## Z/< 2 > + Z/< 8 > ## ------------------------- ## [ [ 0, 1 ], ## [ 1, 1 ] ] ## ## the map is currently represented by the above 2 x 2 matrix ## ------------v------------ ## at homology degree: 0 ## Z/< 2 > + Z/< 2 > ## ------------------------- ## gap> T := RHom( C, N ); ## <An exact cotriangle containing 3 morphisms of right cocomplexes at degrees ## [ 0, 1, 2, 0 ]> ## gap> ByASmallerPresentation( T ); ## <A non-zero exact cotriangle containing ## 3 morphisms of right cocomplexes at degrees [ 0, 1, 2, 0 ]> ## gap> L := LongSequence( T ); ## <A cosequence containing 5 morphisms of right modules at degrees [ 0 .. 5 ]> ## gap> Display( L ); ## ------------------------- ## at cohomology degree: 5 ## Z/< 4 > ## ------------^------------ ## [ [ 0, 3 ] ] ## ## the map is currently represented by the above 1 x 2 matrix ## ------------------------- ## at cohomology degree: 4 ## Z/< 2 > + Z/< 4 > ## ------------^------------ ## [ [ 0, 1 ], ## [ 0, 0 ] ] ## ## the map is currently represented by the above 2 x 2 matrix ## ------------------------- ## at cohomology degree: 3 ## Z/< 2 > + Z/< 2 > ## ------------^------------ ## [ [ 1 ], ## [ 0 ] ] ## ## the map is currently represented by the above 2 x 1 matrix ## ------------------------- ## at cohomology degree: 2 ## Z/< 4 > ## ------------^------------ ## [ [ 0, 2 ] ] ## ## the map is currently represented by the above 1 x 2 matrix ## ------------------------- ## at cohomology degree: 1 ## Z/< 2 > + Z/< 4 > ## ------------^------------ ## [ [ 0, 1 ], ## [ 2, 0 ] ] ## ## the map is currently represented by the above 2 x 2 matrix ## ------------------------- ## at cohomology degree: 0 ## Z/< 2 > + Z/< 2 > ## ------------------------- ## gap> IsExactSequence( L ); ## true ## gap> L; ## <An exact cosequence containing 5 morphisms of right modules at degrees ## [ 0 .. 5 ]> ## ]]></Example> ## <#/GAPDoc> LoadPackage( "Modules" ); ZZ := HomalgRingOfIntegers( ); m := HomalgMatrix( [ [ 8, 0 ], [ 0, 2 ] ], ZZ ); M := LeftPresentation( m ); a := HomalgMatrix( [ [ 2, 0 ] ], ZZ ); alpha := HomalgMap( a, "free", M ); pi := CokernelEpi( alpha ); iota := KernelEmb( pi ); N := Kernel( pi ); C := HomalgComplex( pi ); Add( C, iota ); ByASmallerPresentation( C ); T := RHom( C, N ); ByASmallerPresentation( T ); L := LongSequence( T ); IsExactSequence( L );