Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
Project: cocalc-sagemath-dev-slelievre
Views: 418346## <#GAPDoc Label="TorExt"> ## <Section Label="TorExt"> ## <Heading>TorExt</Heading> ## This corresponds to Example B.6 in <Cite Key="BaSF"/>. ## <Example><![CDATA[ ## gap> ZZ := HomalgRingOfIntegers( ); ## Z ## gap> imat := HomalgMatrix( "[ \ ## > 262, -33, 75, -40, \ ## > 682, -86, 196, -104, \ ## > 1186, -151, 341, -180, \ ## > -1932, 248, -556, 292, \ ## > 1018, -127, 293, -156 \ ## > ]", 5, 4, ZZ ); ## <A 5 x 4 matrix over an internal ring> ## gap> M := LeftPresentation( imat ); ## <A left module presented by 5 relations for 4 generators> ## gap> P := Resolution( M ); ## <A non-zero right acyclic complex containing a single morphism of left modules\ ## at degrees [ 0 .. 1 ]> ## gap> GP := Hom( P ); ## <A non-zero acyclic cocomplex containing a single morphism of right modules at\ ## degrees [ 0 .. 1 ]> ## gap> FGP := GP * P; ## <A non-zero acyclic cocomplex containing a single morphism of left complexes a\ ## t degrees [ 0 .. 1 ]> ## gap> BC := HomalgBicomplex( FGP ); ## <A non-zero bicocomplex containing left modules at bidegrees [ 0 .. 1 ]x ## [ -1 .. 0 ]> ## gap> p_degrees := ObjectDegreesOfBicomplex( BC )[1]; ## [ 0, 1 ] ## gap> II_E := SecondSpectralSequenceWithFiltration( BC, p_degrees ); ## <A stable cohomological spectral sequence with sheets at levels ## [ 0 .. 2 ] each consisting of left modules at bidegrees [ -1 .. 0 ]x ## [ 0 .. 1 ]> ## gap> Display( II_E ); ## The associated transposed spectral sequence: ## ## a cohomological spectral sequence at bidegrees ## [ [ 0 .. 1 ], [ -1 .. 0 ] ] ## --------- ## Level 0: ## ## * * ## * * ## --------- ## Level 1: ## ## * * ## . . ## --------- ## Level 2: ## ## s s ## . . ## ## Now the spectral sequence of the bicomplex: ## ## a cohomological spectral sequence at bidegrees ## [ [ -1 .. 0 ], [ 0 .. 1 ] ] ## --------- ## Level 0: ## ## * * ## * * ## --------- ## Level 1: ## ## * * ## * * ## --------- ## Level 2: ## ## s s ## . s ## gap> filt := FiltrationBySpectralSequence( II_E, 0 ); ## <A descending filtration with degrees [ -1 .. 0 ] and graded parts: ## ## -1: <A non-zero torsion left module presented by yet unknown relations for ## 10 generators> ## 0: <A rank 1 left module presented by 3 relations for 4 generators> ## of ## <A left module presented by yet unknown relations for 13 generators>> ## gap> ByASmallerPresentation( filt ); ## <A descending filtration with degrees [ -1 .. 0 ] and graded parts: ## -1: <A non-zero torsion left module presented by 4 relations ## for 4 generators> ## 0: <A rank 1 left module presented by 2 relations for 3 generators> ## of ## <A rank 1 left module presented by 6 relations for 7 generators>> ## gap> m := IsomorphismOfFiltration( filt ); ## <A non-zero isomorphism of left modules> ## ]]></Example> ## </Section> ## <#/GAPDoc> Read( "homalg.g" ); W := ByASmallerPresentation( M ); ## compute a free resolution of W P := Resolution( W ); ## apply the inner functor G := Hom(-,R) to the resolution GP := Hom( P ); ## tensor with P again FGP := GP * P; ## the bicomplex associated to FGP BC := HomalgBicomplex( FGP ); p_degrees := ObjectDegreesOfBicomplex( BC )[1]; ## the second spectral sequence together with ## the collapsed first spectral sequence II_E := SecondSpectralSequenceWithFiltration( BC, p_degrees ); filt := FiltrationBySpectralSequence( II_E ); ByASmallerPresentation( filt ); m := IsomorphismOfFiltration( filt );