Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
Project: cocalc-sagemath-dev-slelievre
Views: 418346############################################################################# ## ## ExteriorAlgebra.gd Modules package ## ## Copyright 2011, Florian Diebold, University of Kaiserslautern ## ## Declarations of operations for exterior powers. ## ############################################################################# DeclareAttribute( "ExteriorPowers", IsHomalgModule, "mutable" ); ## <#GAPDoc Label="ExteriorPower"> ## <ManSection> ## <Oper Arg="k, M" Name="ExteriorPower"/> ## <Returns>a &homalg; module</Returns> ## <Description> ## Construct the <A>k</A>-th exterior power of module <A>M</A>. ## </Description> ## </ManSection> ## <#/GAPDoc> DeclareOperation( "ExteriorPower", [ IsInt, IsHomalgModule ]); DeclareOperation( "ExteriorPower", [ IsInt, IsHomalgMatrix ]); DeclareOperation( "ExteriorPower", [ IsInt, IsHomalgMorphism ]); DeclareOperation( "ExteriorPowerOfPresentationMorphism", [ IsInt, IsHomalgMorphism ]); ## <#GAPDoc Label="IsExteriorPower"> ## <ManSection> ## <Prop Arg="M" Name="IsExteriorPower"/> ## <Returns><C>true</C> or <C>false</C></Returns> ## <Description> ## Marks a module as an exterior power of another module. ## </Description> ## </ManSection> ## <#/GAPDoc> ## DeclareProperty( "IsExteriorPower", IsHomalgModule ); ## <#GAPDoc Label="ExteriorPowerExponent"> ## <ManSection> ## <Attr Arg="M" Name="ExteriorPowerExponent"/> ## <Returns>an integer</Returns> ## <Description> ## The exponent of the exterior power. ## </Description> ## </ManSection> ## <#/GAPDoc> ## DeclareAttribute( "ExteriorPowerExponent", IsHomalgModule ); ## <#GAPDoc Label="ExteriorPowerBaseModule"> ## <ManSection> ## <Attr Arg="M" Name="ExteriorPowerBaseModule"/> ## <Returns>a homalg module</Returns> ## <Description> ## The module that <A>M</A> is an exterior power of. ## </Description> ## </ManSection> ## <#/GAPDoc> ## DeclareAttribute( "ExteriorPowerBaseModule", IsHomalgModule ); ## <#GAPDoc Label="IsExteriorPowerElement"> ## <ManSection> ## <Prop Arg="x" Name="IsExteriorPowerElement"/> ## <Returns><C>true</C> or <C>false</C></Returns> ## <Description> ## Checks if the element <A>x</A> is from an exterior power. ## </Description> ## </ManSection> ## <#/GAPDoc> ## DeclareProperty( "IsExteriorPowerElement", IsHomalgModuleElement ); DeclareGlobalFunction( "_Homalg_CombinationIndex" ); DeclareGlobalFunction( "_Homalg_IndexCombination" ); DeclareGlobalFunction( "_Homalg_FreeModuleElementFromList" ); DeclareOperation( "Wedge", [ IsHomalgModuleElement, IsHomalgModuleElement ] ); DeclareOperation( "ExteriorPowerElementDual", [ IsHomalgModuleElement ] ); DeclareOperation( "SingleValueOfExteriorPowerElement", [ IsHomalgModuleElement ] ); DeclareOperation( "KoszulCocomplex", [ IsList, IsHomalgModule ] ); DeclareAttribute( "GradeIdeal", IsHomalgModule ); DeclareOperation( "GradeIdealOnModule", [ IsHomalgModule, IsHomalgRingOrModule ] ); DeclareOperation( "GradeList", [ IsList, IsHomalgRingOrModule ] ); DeclareGlobalFunction( "Grade_UsingKoszulCocomplex" ); DeclareGlobalFunction( "WedgeMatrixBaseImages" ); DeclareGlobalFunction( "CayleyDeterminant_Step" ); DeclareAttribute( "CayleyDeterminant", IsHomalgComplex ); ## <#GAPDoc Label="Gcd_UsingCayleyDeterminant"> ## <ManSection> ## <Func Arg="x, y[, ...]" Name="Gcd_UsingCayleyDeterminant"/> ## <Returns>a ring element</Returns> ## <Description> ## Returns the greatest common divisor of the given ring elements, ## calculated using the Cayley determinant. ## </Description> ## </ManSection> ## <#/GAPDoc> ## DeclareGlobalFunction( "Gcd_UsingCayleyDeterminant" ); DeclareOperation( "GcdOp", [ IsHomalgRingElement, IsHomalgRingElement ] ); DeclareGlobalFunction( "Lcm_UsingCayleyDeterminant" );