Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
Project: cocalc-sagemath-dev-slelievre
Views: 41838416 Hilbert basis elements 16 Hilbert basis elements of degree 1 16 extreme rays 16 support hyperplanes embedding dimension = 18 rank = 16 external index = 1 internal index = 1 original monoid is integrally closed size of partial triangulation = 0 resulting sum of |det|s = 0 grading: -879 -60 200 -40 0 -537 -289 -189 -449 -153 -321 -175 -187 -119 -263 -43 624 4 degrees of extreme rays: 1: 16 Hilbert basis elements are of degree 1 *********************************************************************** 16 Hilbert basis elements of degree 1: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 66 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 30 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 47 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 44 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 1 15 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 1 75 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 42 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 1 35 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 1 76 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0 1 89 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 1 98 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 74 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 24 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 89 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 29 0 further Hilbert basis elements of higher degree: 16 extreme rays: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 66 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 30 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 47 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 44 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 1 15 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 1 75 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 42 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 1 35 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 1 76 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0 1 89 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 1 98 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 74 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 24 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 89 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 29 16 support hyperplanes: -660 -45 150 -30 0 -403 -217 -142 -337 -115 -241 -132 -140 -90 -198 -33 468 3 -660 -45 150 -30 0 -403 -217 -142 -337 -115 -241 -131 -141 -90 -198 -33 468 3 -440 -30 100 -20 0 -268 -145 -95 -224 -77 -160 -88 -94 -60 -132 -22 312 2 -440 -30 100 -20 0 -268 -145 -94 -225 -77 -160 -88 -94 -60 -132 -22 312 2 -220 -15 50 -10 0 -135 -72 -47 -113 -38 -80 -44 -47 -30 -66 -11 156 1 -1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 -1 -1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 220 15 -50 10 0 134 72 48 112 39 80 44 47 30 66 11 -156 -1 220 15 -50 10 0 134 73 47 113 38 80 44 47 30 66 11 -156 -1 440 30 -100 20 0 269 145 94 225 77 160 88 94 60 132 22 -312 -2 660 45 -150 30 0 403 217 142 337 115 241 132 141 90 198 33 -468 -3 2 equations: 1 250 120 240 220 269 145 95 225 77 161 88 94 60 132 22 -313 -2 0 501 241 481 441 538 290 190 450 154 322 176 188 120 264 44 -626 -4 16 basis elements of lattice: 1 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 1 64 0 1 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 15 0 0 1 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 -50 0 0 0 1 -1 0 0 0 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 -22 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 -84 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 -1 204 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 -44 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 -1 195 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 -76 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 44 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 47 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 66 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 -313