Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
Project: cocalc-sagemath-dev-slelievre
Views: 41838419 Hilbert basis elements of degree 1 19 extreme rays 134 support hyperplanes embedding dimension = 9 rank = 9 (maximal) external index = 4 internal index = 1 size of triangulation = 281 resulting sum of |det|s = 425 grading: 1 1 1 1 1 1 1 1 1 with denominator = 4 degrees of extreme rays: 1: 19 multiplicity = 425 Hilbert series: 1 10 49 137 161 63 4 denominator with 9 factors: 1: 9 degree of Hilbert Series as rational function = -3 Hilbert polynomial: 40320 142512 216092 191156 112105 46088 14098 3284 425 with common denominator = 40320 *********************************************************************** 19 Hilbert basis elements of degree 1: 0 0 0 0 1 1 1 0 1 0 0 1 1 1 1 0 0 0 0 1 0 0 1 1 1 0 0 0 1 0 1 1 0 0 0 1 0 1 0 1 1 1 0 0 0 0 1 1 0 1 0 1 0 0 0 1 1 0 1 1 0 0 0 0 1 1 1 0 0 1 0 0 0 1 1 1 1 0 0 0 0 1 0 0 1 0 1 1 0 0 1 0 0 1 1 1 0 0 0 1 0 1 0 0 0 0 1 1 1 0 1 0 0 1 0 1 0 1 0 1 1 1 0 0 0 0 1 1 0 0 0 1 0 0 1 1 1 0 0 1 0 1 0 0 1 1 0 1 0 0 0 1 0 1 1 1 0 1 0 0 0 0 1 1 1 1 0 0 0 0 0 19 extreme rays: 0 0 0 0 1 1 1 0 1 0 0 1 1 1 1 0 0 0 0 1 0 0 1 1 1 0 0 0 1 0 1 1 0 0 0 1 0 1 0 1 1 1 0 0 0 0 1 1 0 1 0 1 0 0 0 1 1 0 1 1 0 0 0 0 1 1 1 0 0 1 0 0 0 1 1 1 1 0 0 0 0 1 0 0 1 0 1 1 0 0 1 0 0 1 1 1 0 0 0 1 0 1 0 0 0 0 1 1 1 0 1 0 0 1 0 1 0 1 0 1 1 1 0 0 0 0 1 1 0 0 0 1 0 0 1 1 1 0 0 1 0 1 0 0 1 1 0 1 0 0 0 1 0 1 1 1 0 1 0 0 0 0 1 1 1 1 0 0 0 0 0 134 support hyperplanes: -11 5 9 -3 5 13 1 9 -7 -7 -3 1 9 17 5 -7 1 5 -7 1 5 1 1 9 5 5 -3 -7 1 9 -3 13 17 -7 9 -11 -5 3 5 -1 1 5 1 3 -3 -3 1 -3 5 5 1 -3 5 1 -3 1 1 1 1 1 1 1 1 -3 1 3 -1 1 3 1 3 -1 -3 1 3 1 -1 3 3 1 -1 -3 3 -1 1 3 5 -3 -1 5 -3 5 -3 5 1 -3 1 9 1 -3 5 -3 5 1 1 -3 5 1 -1 -5 -1 7 7 3 -1 -1 3 -1 -3 1 3 5 -1 -1 1 5 -1 -1 -1 3 3 -1 -1 3 3 -1 -1 1 1 1 -1 1 1 3 -1 -1 2 0 0 1 2 2 1 -1 -1 3 -1 -1 3 3 3 3 -1 -1 3 -1 1 1 1 3 1 -1 0 1 0 0 1 1 1 0 -1 1 -1 1 1 -1 1 3 1 -1 1 -1 1 1 1 -1 1 1 -1 1 -1 1 1 1 -1 3 -1 -1 1 -1 1 1 3 -1 -1 3 -1 1 -1 1 1 3 -1 5 -3 -1 1 -1 2 1 0 -1 2 0 -1 1 -1 3 1 -1 -1 3 1 -1 1 0 0 1 2 -1 3 -2 -1 1 0 1 0 0 0 1 0 -1 1 0 2 0 -1 0 2 1 -1 1 1 -1 1 1 1 1 -1 -1 1 1 -1 1 3 -1 1 -1 -1 1 1 0 0 1 0 1 -1 -1 1 1 1 -1 1 1 1 -1 -1 1 2 0 0 1 0 0 -1 -1 1 2 1 0 0 0 -1 0 -1 1 4 2 0 -1 0 -2 1 -1 3 -5 3 3 -1 -1 7 -1 -1 3 -1 -1 3 -1 3 3 -1 -1 3 -1 1 1 -1 1 3 -1 -1 3 -1 3 -1 -1 -1 3 3 -1 3 -1 3 -1 -1 3 3 -1 -1 3 3 -1 -1 3 -1 -1 -1 0 -2 3 -1 2 1 0 3 1 0 -1 0 1 1 0 0 0 1 0 -1 1 0 1 0 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 -1 1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 -1 0 0 0 0 1 -1 0 1 0 1 1 0 0 1 0 0 0 0 0 0 0 0 1 0 1 1 -1 0 -1 0 0 1 1 -1 0 1 -1 0 0 0 1 1 1 0 -1 -1 0 0 1 0 -1 1 0 1 0 0 0 1 0 -1 1 0 1 1 -1 0 1 0 0 0 1 -1 -1 1 0 1 0 1 -1 0 2 1 -1 0 2 0 -1 1 0 1 2 -2 0 2 1 0 -1 1 -1 -2 1 1 -7 1 5 5 9 1 1 -3 1 -3 -1 3 3 1 1 -1 1 1 -3 1 1 1 1 1 1 1 1 -3 1 1 5 -3 1 1 5 1 -3 1 5 1 1 1 -3 1 1 -3 1 5 5 1 -3 -3 1 1 -3 5 -1 3 1 -1 3 1 1 -3 5 9 13 1 -11 -7 1 1 -1 -1 1 1 1 1 -1 1 1 -1 0 1 1 0 0 -1 0 1 -1 1 1 1 1 -1 -1 -1 1 -1 1 3 -1 1 1 -1 -1 1 -1 3 0 2 1 -2 0 -1 1 -1 3 3 5 1 -5 -3 -1 1 0 0 -1 2 -1 1 0 0 1 0 0 0 0 0 0 -1 0 1 0 0 0 1 -1 0 0 0 1 1 -3 1 1 1 1 1 1 1 1 -3 1 1 1 1 5 -3 1 1 -3 1 1 5 1 -3 5 1 1 -3 5 5 -3 -3 5 1 1 1 -1 -1 1 1 1 -1 1 1 1 -1 1 1 -1 -1 1 1 1 1 1 -3 1 1 1 1 1 1 1 1 -3 3 -1 3 1 -1 1 1 1 -3 5 -3 5 1 1 1 1 1 -1 -1 1 -1 -1 1 1 1 1 -1 1 -1 1 -1 -1 1 1 1 1 -3 1 1 -3 1 1 1 1 1 -1 -1 3 -1 -1 1 1 1 1 1 -3 1 1 1 1 1 1 1 1 1 -3 -3 1 1 1 5 1 1 -3 1 -3 1 1 2 0 -3 2 1 1 0 -1 1 2 1 -1 -1 3 -2 -2 0 1 3 -1 -3 3 1 1 -1 1 1 3 1 -5 5 -1 5 1 -3 1 3 1 -1 -1 1 -1 -3 1 1 3 1 -1 -1 3 -3 -3 1 1 5 -3 -3 5 1 1 9 -7 1 5 1 -7 5 1 5 1 -3 1 5 1 -7 9 -3 9 1 -3 1 5 3 -3 -1 7 -5 -3 -1 2 -1 0 1 1 0 0 -1 -1 2 1 0 -3 4 -1 2 0 -2 3 -5 -1 3 3 3 3 -1 -1 3 -5 3 7 -1 3 3 -5 -1 3 -1 -1 -1 3 -1 3 -1 -1 3 -1 -1 -1 7 -5 3 3 3 3 -1 -1 3 3 -1 -1 -1 -1 3 -1 3 -1 3 -1 -1 -1 -1 3 -1 3 3 7 -1 -5 -5 -1 3 1 1 -1 1 -1 -1 -3 1 3 3 -1 -5 3 3 3 -1 -1 3 3 -1 -1 -1 3 -1 -5 3 3 3 1 -1 -1 1 -3 -5 3 3 3 3 -1 -1 -1 -1 -5 3 3 7 3 -5 -1 3 -1 -5 -1 3 7 3 -1 -5 3 -5 -9 7 3 11 3 -1 -5 7 -9 -13 7 5 1 1 -7 9 -3 5 1 -3 5 1 1 -3 5 -3 1 -3 -3 5 5 1 -3 -3 5 -3 -7 1 5 9 1 -3 -3 5 -7 -11 5 7 -1 3 -1 7 -5 -1 -5 -1 7 3 -1 -9 15 -5 7 -1 -5 7 11 3 -9 -1 7 -5 -9 -1 9 -7 1 5 5 1 1 -7 -3 9 -3 1 1 5 -3 1 -7 -3 11 -1 -1 -1 7 -5 3 -5 -5 1 congruences: 1 1 1 1 1 1 1 1 1 4 9 basis elements of lattice: 1 0 0 0 0 0 0 0 -1 0 1 0 0 0 0 0 0 -1 0 0 1 0 0 0 0 0 -1 0 0 0 1 0 0 0 0 -1 0 0 0 0 1 0 0 0 -1 0 0 0 0 0 1 0 0 -1 0 0 0 0 0 0 1 0 -1 0 0 0 0 0 0 0 1 -1 0 0 0 0 0 0 0 0 4