Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place. Commercial Alternative to JupyterHub.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place. Commercial Alternative to JupyterHub.
| Download
GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
Project: cocalc-sagemath-dev-slelievre
Views: 51801974 extreme rays 15 support hyperplanes embedding dimension = 25 rank = 9 external index = 1 internal index = 1 size of triangulation = 1230 resulting sum of |det|s = 1496 grading: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 with denominator = 5 degrees of extreme rays: 1: 2 2: 32 3: 16 4: 16 5: 8 multiplicity = 2573381/518400 Hilbert series: 1 1 29 45 297 386 1422 1322 4232 3440 9480 7076 18054 12708 30688 20728 47906 30896 69100 43288 93684 57310 120370 71966 149737 87809 178473 103613 208917 119560 238348 135524 268132 151708 297968 167108 328412 183292 356884 199768 388076 214820 416788 231308 447488 247492 476348 262316 507604 279608 535356 295124 566884 310412 596128 327092 625884 342892 655172 358536 686762 374802 713354 390946 746222 405168 771344 419784 796484 432648 814940 439164 829336 445364 831440 445364 829336 439164 814940 432648 796484 419784 771344 405168 746222 390946 713354 374802 686762 358536 655172 342892 625884 327092 596128 310412 566884 295124 535356 279608 507604 262316 476348 247492 447488 231308 416788 214820 388076 199768 356884 183292 328412 167108 297968 151708 268132 135524 238348 119560 208917 103613 178473 87809 149737 71966 120370 57310 93684 43288 69100 30896 47906 20728 30688 12708 18054 7076 9480 3440 4232 1322 1422 386 297 45 29 1 1 denominator with 9 factors: 1: 1 2: 4 12: 2 60: 2 degree of Hilbert Series as rational function = -5 The numerator of the Hilbert Series is symmetric. Hilbert series with cyclotomic denominator: -1 -7 -56 -292 -1326 -4861 -15447 -42154 -101859 -218899 -425345 -751047 -1216711 -1814704 -2506071 -3210389 -3827639 -4249631 -4401218 -4249631 -3827639 -3210389 -2506071 -1814704 -1216711 -751047 -425345 -218899 -101859 -42154 -15447 -4861 -1326 -292 -56 -7 -1 cyclotomic denominator: 1: 9 2: 8 3: 4 4: 4 5: 2 Hilbert quasi-polynomial of period 60: 0: 62705664000 98139340800 102119616000 66243260160 28774370016 8324756160 1535109464 163758360 7720143 1: 4869062639 18796982208 42232204500 34721308160 17634946266 5796389760 1207666964 145047360 7720143 2: 127341127424 140496672768 102390768000 66104268160 28774370016 8324756160 1535109464 163758360 7720143 3: -87079873041 -16079352768 42112588500 34754348160 17634946266 5796389760 1207666964 145047360 7720143 4: 113449140224 114595233792 101259456000 66128572160 28774370016 8324756160 1535109464 163758360 7720143 5: -16867524625 27339403200 43608460500 34778652160 17634946266 5796389760 1207666964 145047360 7720143 6: 48169707264 91419383808 101874672000 66161612160 28774370016 8324756160 1535109464 163758360 7720143 7: 98104546799 56560815168 41252428500 34639660160 17634946266 5796389760 1207666964 145047360 7720143 8: -32695484416 74979704832 102635712000 66185916160 28774370016 8324756160 1535109464 163758360 7720143 9: 20342767599 26420064192 43092364500 34835996160 17634946266 5796389760 1207666964 145047360 7720143 10: 86873696000 107875276800 101014512000 66046924160 28774370016 8324756160 1535109464 163758360 7720143 11: -27974265361 16945286208 42628684500 34697004160 17634946266 5796389760 1207666964 145047360 7720143 12: 138955751424 130244640768 102119616000 66243260160 28774370016 8324756160 1535109464 163758360 7720143 13: -65361281041 -5281992768 42232204500 34721308160 17634946266 5796389760 1207666964 145047360 7720143 14: 77176596224 116417697792 102390768000 66104268160 28774370016 8324756160 1535109464 163758360 7720143 15: -2803460625 16025947200 42112588500 34754348160 17634946266 5796389760 1207666964 145047360 7720143 16: 73317515264 98542583808 101259456000 66128572160 28774370016 8324756160 1535109464 163758360 7720143 17: 59382562799 59444703168 43608460500 34778652160 17634946266 5796389760 1207666964 145047360 7720143 18: -22060636416 67340408832 101874672000 66161612160 28774370016 8324756160 1535109464 163758360 7720143 19: 47940015599 32481840192 41252428500 34639660160 17634946266 5796389760 1207666964 145047360 7720143 20: 51580928000 107085004800 102635712000 66185916160 28774370016 8324756160 1535109464 163758360 7720143 21: -19788857361 10367414208 43092364500 34835996160 17634946266 5796389760 1207666964 145047360 7720143 22: 163123783424 139980576768 101014512000 66046924160 28774370016 8324756160 1535109464 163758360 7720143 23: -98204609041 -7133688768 42628684500 34697004160 17634946266 5796389760 1207666964 145047360 7720143 24: 88791220224 106165665792 102119616000 66243260160 28774370016 8324756160 1535109464 163758360 7720143 25: 18915131375 26823307200 42232204500 34721308160 17634946266 5796389760 1207666964 145047360 7720143 26: 37044971264 100365047808 102390768000 66104268160 28774370016 8324756160 1535109464 163758360 7720143 27: 73446626799 48131247168 42112588500 34754348160 17634946266 5796389760 1207666964 145047360 7720143 28: 3087171584 74463608832 101259456000 66128572160 28774370016 8324756160 1535109464 163758360 7720143 29: 9218031599 35365728192 43608460500 34778652160 17634946266 5796389760 1207666964 145047360 7720143 30: 62215776000 99445708800 101874672000 66161612160 28774370016 8324756160 1535109464 163758360 7720143 31: 7808390639 16429190208 41252428500 34639660160 17634946266 5796389760 1207666964 145047360 7720143 32: 127831015424 139190304768 102635712000 66185916160 28774370016 8324756160 1535109464 163758360 7720143 33: -90019201041 -13711560768 43092364500 34835996160 17634946266 5796389760 1207666964 145047360 7720143 34: 112959252224 115901601792 101014512000 66046924160 28774370016 8324756160 1535109464 163758360 7720143 35: -13928196625 24971611200 42628684500 34697004160 17634946266 5796389760 1207666964 145047360 7720143 36: 48659595264 90113015808 102119616000 66243260160 28774370016 8324756160 1535109464 163758360 7720143 37: 95165218799 58928607168 42232204500 34721308160 17634946266 5796389760 1207666964 145047360 7720143 38: -33185372416 76286072832 102390768000 66104268160 28774370016 8324756160 1535109464 163758360 7720143 39: 23282095599 24052272192 42112588500 34754348160 17634946266 5796389760 1207666964 145047360 7720143 40: 87363584000 106568908800 101259456000 66128572160 28774370016 8324756160 1535109464 163758360 7720143 41: -30913593361 19313078208 43608460500 34778652160 17634946266 5796389760 1207666964 145047360 7720143 42: 138465863424 131551008768 101874672000 66161612160 28774370016 8324756160 1535109464 163758360 7720143 43: -62421953041 -7649784768 41252428500 34639660160 17634946266 5796389760 1207666964 145047360 7720143 44: 77666484224 115111329792 102635712000 66185916160 28774370016 8324756160 1535109464 163758360 7720143 45: -5742788625 18393739200 43092364500 34835996160 17634946266 5796389760 1207666964 145047360 7720143 46: 72827627264 99848951808 101014512000 66046924160 28774370016 8324756160 1535109464 163758360 7720143 47: 62321890799 57076911168 42628684500 34697004160 17634946266 5796389760 1207666964 145047360 7720143 48: -21570748416 66034040832 102119616000 66243260160 28774370016 8324756160 1535109464 163758360 7720143 49: 45000687599 34849632192 42232204500 34721308160 17634946266 5796389760 1207666964 145047360 7720143 50: 51091040000 108391372800 102390768000 66104268160 28774370016 8324756160 1535109464 163758360 7720143 51: -16849529361 7999622208 42112588500 34754348160 17634946266 5796389760 1207666964 145047360 7720143 52: 163613671424 138674208768 101259456000 66128572160 28774370016 8324756160 1535109464 163758360 7720143 53: -101143937041 -4765896768 43608460500 34778652160 17634946266 5796389760 1207666964 145047360 7720143 54: 88301332224 107472033792 101874672000 66161612160 28774370016 8324756160 1535109464 163758360 7720143 55: 21854459375 24455515200 41252428500 34639660160 17634946266 5796389760 1207666964 145047360 7720143 56: 37534859264 99058679808 102635712000 66185916160 28774370016 8324756160 1535109464 163758360 7720143 57: 70507298799 50499039168 43092364500 34835996160 17634946266 5796389760 1207666964 145047360 7720143 58: 2597283584 75769976832 101014512000 66046924160 28774370016 8324756160 1535109464 163758360 7720143 59: 12157359599 32997936192 42628684500 34697004160 17634946266 5796389760 1207666964 145047360 7720143 with common denominator = 62705664000 *********************************************************************** 74 extreme rays: 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 1 0 0 2 0 0 0 2 0 0 0 1 0 0 1 0 1 0 0 0 1 0 0 0 1 1 0 1 1 0 0 0 1 0 0 1 1 0 0 1 0 1 0 1 0 0 0 0 0 1 1 0 1 1 0 0 0 1 0 1 0 1 0 1 0 0 1 0 0 0 1 0 0 0 1 1 0 2 0 0 0 0 0 0 1 1 1 0 1 0 0 1 0 1 0 0 0 0 1 0 1 0 0 1 0 1 1 1 0 0 0 0 0 0 2 0 1 1 0 0 0 0 0 1 0 1 0 1 0 0 1 1 0 0 1 0 0 0 1 1 0 1 1 0 0 0 0 0 1 0 1 0 1 1 0 0 1 1 0 0 0 0 0 0 1 1 1 0 0 1 0 0 0 1 0 1 0 2 0 0 0 1 0 0 1 0 0 0 1 0 1 1 0 0 1 0 0 0 1 1 0 0 0 1 1 0 1 1 0 0 0 1 1 0 0 0 0 0 0 0 2 0 0 1 1 0 0 1 0 1 0 1 0 0 0 1 1 1 0 0 0 0 0 1 0 1 0 0 2 0 0 0 0 0 1 1 2 0 0 0 0 0 1 0 1 0 0 1 0 0 1 0 0 2 0 0 0 1 0 1 0 2 0 0 0 0 0 1 0 0 1 0 0 0 1 1 0 1 0 0 1 1 0 1 0 0 0 1 0 0 1 0 0 0 2 0 1 0 1 0 0 0 1 0 0 1 1 0 1 0 0 0 1 0 1 0 0 0 1 1 0 1 0 0 0 1 0 1 0 0 1 1 1 0 0 0 0 0 0 1 1 0 0 1 1 0 1 0 1 0 0 0 1 0 0 1 1 1 0 0 0 0 0 0 2 0 0 0 2 0 0 1 0 0 0 1 0 1 1 0 0 1 0 0 1 0 1 0 0 0 1 0 1 0 1 0 0 0 1 0 1 0 1 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 1 0 0 0 0 0 0 2 1 0 0 0 1 0 0 1 0 1 0 1 0 1 0 0 0 1 1 0 1 1 0 0 0 1 0 0 0 1 0 0 2 0 0 0 2 0 0 0 0 0 0 1 1 1 0 0 1 0 1 0 0 0 1 0 1 0 0 1 0 0 0 2 0 0 0 2 0 0 1 1 0 0 0 1 0 0 0 1 0 1 1 0 0 0 1 0 1 0 0 0 1 0 1 1 0 0 1 0 1 0 0 1 0 0 0 1 1 0 0 1 0 0 1 1 1 0 0 0 0 0 1 0 1 1 0 0 1 0 0 1 0 1 0 0 0 0 0 2 1 1 0 0 0 0 0 2 0 0 1 0 1 0 0 0 0 0 1 1 1 0 0 0 1 0 1 0 1 0 0 1 1 0 0 1 0 1 0 0 0 0 0 1 1 1 0 0 1 0 0 1 1 0 0 0 1 0 0 1 1 0 1 0 0 0 0 1 1 0 1 1 0 0 0 0 1 0 0 1 0 0 0 1 1 1 0 1 0 0 0 1 0 1 0 1 0 0 0 1 0 1 0 0 1 0 0 1 1 0 1 1 0 0 0 1 0 0 1 0 0 0 0 0 2 0 1 0 1 0 0 0 2 0 0 1 1 0 0 0 1 0 0 1 0 0 0 0 1 1 0 1 1 0 0 0 0 1 0 1 2 0 0 0 0 0 0 0 1 1 0 0 0 1 1 0 1 1 0 0 0 1 1 0 0 2 0 0 0 0 0 0 1 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 1 0 0 0 0 2 1 0 1 2 0 0 0 2 1 0 0 2 0 0 0 1 1 0 0 1 1 0 0 0 2 1 0 2 1 0 0 0 1 1 0 1 2 0 0 0 1 1 0 1 1 0 0 0 1 1 1 0 2 1 0 0 1 1 1 0 0 1 0 0 0 2 1 0 0 2 0 0 1 0 2 0 1 0 1 1 0 0 1 1 0 1 2 1 0 0 0 0 0 1 0 2 0 1 0 2 0 1 1 0 1 0 0 0 1 0 2 2 1 0 0 0 0 0 2 0 1 0 1 1 0 1 1 0 0 0 2 1 0 1 1 0 0 0 1 2 0 1 2 0 0 0 0 2 0 0 1 2 0 0 0 1 0 0 1 1 1 0 0 1 2 0 1 1 1 0 0 0 2 0 0 1 2 0 0 0 1 0 0 1 2 0 0 0 2 1 0 1 1 0 0 1 0 2 0 1 0 2 0 0 1 0 0 0 1 0 2 1 1 0 1 0 0 0 2 0 1 0 2 0 1 0 2 0 0 1 0 0 0 1 1 1 1 1 1 0 0 0 0 1 0 2 1 0 0 1 1 0 1 2 0 0 0 2 1 0 0 1 0 0 0 2 1 0 0 2 0 1 0 2 0 0 0 0 0 1 2 2 0 1 0 0 0 1 0 1 1 0 2 0 1 0 1 0 2 0 0 0 1 0 1 1 2 0 1 0 0 0 1 0 0 2 0 1 0 2 0 1 1 0 0 1 1 0 0 0 2 0 0 1 2 0 0 0 2 1 0 1 2 0 0 0 2 0 1 0 0 0 0 0 1 2 1 0 1 1 0 0 1 1 0 1 0 2 0 1 0 2 0 1 0 0 0 0 1 1 1 1 1 1 0 0 0 1 0 0 2 0 1 0 2 0 0 0 1 1 2 0 3 0 0 1 1 0 0 3 0 1 0 3 0 0 2 1 0 0 1 0 0 1 2 1 0 3 0 1 0 1 0 0 0 3 2 1 0 1 0 1 0 3 0 0 0 0 3 0 1 0 1 0 1 2 3 0 0 0 1 0 1 0 3 0 1 2 1 0 0 0 0 3 0 1 0 3 0 1 0 3 0 0 0 1 0 1 0 1 2 1 0 1 2 0 0 0 3 1 0 0 1 0 2 1 3 0 0 1 0 1 2 1 0 0 0 1 0 0 3 0 1 1 0 2 1 0 3 0 0 1 3 0 0 0 0 0 0 3 1 2 0 0 1 1 0 1 3 0 0 1 0 1 2 0 3 1 0 0 0 0 2 0 1 1 0 0 0 1 3 0 2 1 0 1 2 1 0 1 0 1 0 0 0 3 0 1 0 3 0 1 0 3 0 0 1 0 0 1 2 0 0 3 0 1 0 3 0 0 1 1 0 0 3 0 2 1 1 0 0 1 0 0 2 1 0 0 3 1 0 0 3 0 1 0 2 1 1 0 0 1 0 0 0 3 1 1 0 0 2 1 3 0 0 0 0 0 0 3 1 0 0 3 0 1 2 0 1 1 0 1 2 0 0 1 2 0 1 1 0 0 1 0 3 0 0 1 3 0 0 1 0 0 0 3 3 0 0 0 1 0 0 1 1 2 0 1 0 3 0 0 1 3 0 0 1 2 0 0 1 3 0 0 0 1 0 0 3 1 0 0 3 0 1 0 0 1 1 0 2 1 0 0 2 1 3 0 0 1 0 0 0 1 2 1 0 1 0 0 3 1 2 0 1 0 0 1 3 0 0 3 1 0 0 0 1 1 0 2 0 0 0 0 1 3 0 2 1 0 1 0 0 3 1 0 0 0 0 4 1 0 0 4 1 0 0 4 1 0 0 4 1 0 0 0 1 0 0 0 4 0 0 0 4 1 0 4 0 1 0 0 0 1 0 4 4 1 0 0 0 1 0 4 0 0 0 0 4 0 1 0 0 0 1 4 4 0 1 0 0 0 1 0 4 0 1 4 0 0 0 0 0 4 0 1 0 4 0 1 0 4 0 1 0 0 0 1 0 0 4 1 0 0 4 0 0 4 0 0 1 4 0 0 1 0 0 0 1 0 4 0 1 0 4 0 1 0 4 0 0 0 4 0 0 1 4 0 0 1 0 0 0 1 4 0 0 1 4 0 0 1 0 0 0 4 4 0 0 0 1 0 0 0 1 4 0 0 1 4 0 0 1 4 0 0 1 4 0 0 0 4 0 0 0 1 0 0 4 1 0 0 4 1 0 0 0 1 0 0 4 1 0 0 4 0 15 support hyperplanes: -1 0 0 0 -1 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 2 0 0 -1 2 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 -1 -1 1 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0 -1 -1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 -2 0 1 1 -2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 -1 0 0 0 -2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 16 equations: 1 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 -1 -1 0 0 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 -1 -1 0 2 0 -1 -1 -1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 -2 1 0 0 -2 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 -1 -1 -1 0 -1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 2 -1 -1 0 2 0 -1 -1 -1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 -1 1 1 0 -3 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 -2 1 0 0 -2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 2 0 0 0 1 -1 -1 -1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 -1 -1 -1 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 -1 0 9 basis elements of lattice: 1 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 1 0 1 0 1 -1 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 1 0 1 0 -1 0 0 0 0 1 0 1 -1 1 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 -1 0 2 0 0 0 3 -2 1 1 2 -2 -1 0 0 0 0 0 0 1 0 0 -1 0 0 0 0 0 0 0 0 -1 1 0 -1 0 1 0 0 0 0 0 0 0 0 1 0 -1 0 1 0 0 -1 0 0 0 -1 1 0 -1 -1 1 1 0 0 0 0 0 0 0 0 1 -1 0 0 -2 0 2 0 1 0 1 -2 0 -1 2 -2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 -1 0 0 1 -1 0 0 0 -1 0 1