Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
Project: cocalc-sagemath-dev-slelievre
Views: 418346<?xml version="1.0" encoding="UTF-8"?>12<!-- This is an automatically generated file. -->3<Chapter Label="Chapter_Functions">4<Heading>Functions</Heading>56<P/>7In this chapter we describe the functions offered by <A>NormalizInterface</A>.8All functions supplied by this package start with <Q>Nmz</Q>.9For examples see the chapter <Ref Chap="Chapter_Examples" Style="Text"/>.10<P/>11<Section Label="Chapter_Functions_Section_Create_a_NmzCone">12<Heading>Create a NmzCone</Heading>1314<P/>15To create a cone object use <A>NmzCone</A>.16<P/>17<ManSection>18<Func Arg="list" Name="NmzCone" />19<Returns>NmzCone20</Returns>21<Description>22Creates a NmzCone. The <A>list</A> argument should contain an even number of23elements, alternating between a string and a integer matrix. The string has to24correspond to a Normaliz input type string and the following matrix will be25interpreted as input of that type.26<P/>27Currently the following strings are recognized:28<List>29<Item><C>integral_closure</C>,</Item>30<Item><C>polyhedron</C>,</Item>31<Item><C>normalization</C>,</Item>32<Item><C>polytope</C>,</Item>33<Item><C>rees_algebra</C>,</Item>34<Item><C>inequalities</C>,</Item>35<Item><C>strict_inequalities</C>,</Item>36<Item><C>signs</C>,</Item>37<Item><C>strict_signs</C>,</Item>38<Item><C>equations</C>,</Item>39<Item><C>congruences</C>,</Item>40<Item><C>inhom_inequalities</C>,</Item>41<Item><C>inhom_equations</C>,</Item>42<Item><C>inhom_congruences</C>,</Item>43<Item><C>dehomogenization</C>,</Item>44<Item><C>lattice_ideal</C>,</Item>45<Item><C>grading</C>,</Item>46<Item><C>excluded_faces</C>,</Item>47<Item><C>lattice</C>,</Item>48<Item><C>saturation</C>,</Item>49<Item><C>cone</C>,</Item>50<Item><C>offset</C>,</Item>51<Item><C>vertices</C>,</Item>52<Item><C>support_hyperplanes</C>,</Item>53<Item><C>cone_and_lattice</C>,</Item>54<Item><C>subspace</C>.</Item>55</List>56<P/>57See the Normaliz manual for a detailed description.58<P/>59<Example><![CDATA[60gap> cone := NmzCone(["integral_closure",[[2,1],[1,3]]]);61<a Normaliz cone>62]]></Example>63646566</Description>67</ManSection>686970</Section>717273<Section Label="Chapter_Functions_Section_Use_a_NmzCone">74<Heading>Use a NmzCone</Heading>7576<P/>77<ManSection>78<Func Arg="cone property" Name="NmzHasConeProperty" />79<Returns>whether the cone has already computed the given property80</Returns>81<Description>82See <Ref Func="NmzConeProperty"/> for a list of recognized properties.83<P/>84<Example><![CDATA[85gap> NmzHasConeProperty(cone, "ExtremeRays");86false87]]></Example>88899091</Description>92</ManSection>939495<ManSection>96<Func Arg="cone" Name="NmzKnownConeProperties" />97<Returns>a list of strings representing the known (computed) cone properties98</Returns>99<Description>100Given a Normaliz cone object, return a list of all properties already101computed for the cone.102<P/>103<Example><![CDATA[104gap> NmzKnownConeProperties(cone);105[ "Generators", "OriginalMonoidGenerators", "Sublattice" ]106]]></Example>107108109110</Description>111</ManSection>112113114<ManSection>115<Func Arg="verboseFlag" Name="NmzSetVerboseDefault" />116<Returns>the previous verbosity117</Returns>118<Description>119Set the global default verbosity state in libnormaliz.120This will influence all NmzCone created afterwards, but not any existing ones.121<P/>122See also <Ref Func="NmzSetVerbose"/>123</Description>124</ManSection>125126127<ManSection>128<Func Arg="cone verboseFlag" Name="NmzSetVerbose" />129<Returns>the previous verbosity130</Returns>131<Description>132Set the verbosity state for a cone.133<P/>134See also <Ref Func="NmzSetVerboseDefault"/>135</Description>136</ManSection>137138139<ManSection>140<Func Arg="cone[, propnames]" Name="NmzCompute" />141<Returns>a boolean indicating success142</Returns>143<Description>144Start computing properties of the given cone.145The first parameter indicates a cone object, the second parameter146is either a single string, or a list of strings, which indicate147what should be computed.148<P/>149<P/>150The single parameter version is equivalent to151<C>NmzCone(cone, ["DefaultMode"])</C>.152See <Ref Func="NmzConeProperty"/> for a list of recognized properties.153<Example><![CDATA[154gap> NmzKnownConeProperties(cone);155[ "Generators", "OriginalMonoidGenerators", "Sublattice" ]156gap> NmzCompute(cone, ["SupportHyperplanes", "IsPointed"]);157true158gap> NmzKnownConeProperties(cone);159[ "Generators", "ExtremeRays", "SupportHyperplanes", "IsPointed",160"IsDeg1ExtremeRays", "OriginalMonoidGenerators", "Sublattice",161"MaximalSubspace" ]162gap> NmzCompute(cone);163true164gap> NmzKnownConeProperties(cone);165[ "Generators", "ExtremeRays", "SupportHyperplanes", "TriangulationSize",166"TriangulationDetSum", "HilbertBasis", "IsPointed", "IsDeg1ExtremeRays",167"IsIntegrallyClosed", "OriginalMonoidGenerators", "Sublattice",168"ClassGroup", "MaximalSubspace"]169]]></Example>170171172173</Description>174</ManSection>175176177<ManSection>178<Func Arg="cone, property" Name="NmzConeProperty" />179<Returns>the result of the computation, type depends on the property180</Returns>181<Description>182Triggers the computation of the property of the cone and returns the result.183If the property was already known, it is not recomputed.184Currently the following strings are recognized as properties:185<List>186<Item><C>Generators</C> see <Ref Func="NmzGenerators"/>,</Item>187<Item><C>ExtremeRays</C> see <Ref Func="NmzExtremeRays"/>,</Item>188<Item><C>VerticesOfPolyhedron</C> see <Ref Func="NmzVerticesOfPolyhedron"/>,</Item>189<Item><C>SupportHyperplanes</C> see <Ref Func="NmzSupportHyperplanes"/>,</Item>190<Item><C>TriangulationSize</C> see <Ref Func="NmzTriangulationSize"/>,</Item>191<Item><C>TriangulationDetSum</C> see <Ref Func="NmzTriangulationDetSum"/>,</Item>192<Item><C>Triangulation</C> see <Ref Func="NmzTriangulation"/>,</Item>193<Item><C>Multiplicity</C> see <Ref Func="NmzMultiplicity"/>,</Item>194<Item><C>RecessionRank</C> see <Ref Func="NmzRecessionRank"/>,</Item>195<Item><C>AffineDim</C> see <Ref Func="NmzAffineDim"/>,</Item>196<Item><C>ModuleRank</C> see <Ref Func="NmzModuleRank"/>,</Item>197<Item><C>HilbertBasis</C> see <Ref Func="NmzHilbertBasis"/>,</Item>198<Item><C>ModuleGenerators</C> see <Ref Func="NmzModuleGenerators"/>,</Item>199<Item><C>Deg1Elements</C> see <Ref Func="NmzDeg1Elements"/>,</Item>200<Item><C>HilbertSeries</C> see <Ref Func="NmzHilbertSeries"/>,</Item>201<Item><C>HilbertQuasiPolynomial</C> see <Ref Func="NmzHilbertQuasiPolynomial"/>,</Item>202<Item><C>Grading</C> see <Ref Func="NmzGrading"/>,</Item>203<Item><C>IsPointed</C> see <Ref Func="NmzIsPointed"/>,</Item>204<Item><C>IsDeg1ExtremeRays</C> see <Ref Func="NmzIsDeg1ExtremeRays"/>,</Item>205<Item><C>IsDeg1HilbertBasis</C> see <Ref Func="NmzIsDeg1HilbertBasis"/>,</Item>206<Item><C>IsIntegrallyClosed</C> see <Ref Func="NmzIsIntegrallyClosed"/>,</Item>207<Item><C>OriginalMonoidGenerators</C> see <Ref Func="NmzOriginalMonoidGenerators"/>,</Item>208<Item><C>IsReesPrimary</C> see <Ref Func="NmzIsReesPrimary"/>,</Item>209<Item><C>ReesPrimaryMultiplicity</C> see <Ref Func="NmzReesPrimaryMultiplicity"/>,</Item>210<Item><C>ExcludedFaces</C> see <Ref Func="NmzExcludedFaces"/>,</Item>211<Item><C>Dehomogenization</C> see <Ref Func="NmzDehomogenization"/>,</Item>212<Item><C>InclusionExclusionData</C> see <Ref Func="NmzInclusionExclusionData"/>,</Item>213<Item><C>ClassGroup</C> see <Ref Func="NmzClassGroup"/>,</Item>214<Item><C>ModuleGeneratorsOverOriginalMonoid</C> see <Ref Func="NmzModuleGeneratorsOverOriginalMonoid"/>,</Item>215<Item><C>Sublattice</C> computes the efficient sublattice and returns a bool signaling216whether the computation was successful. Actual data connected to217it can be accessed by <Ref Func="NmzRank"/>, <Ref Func="NmzEquations"/>,218<Ref Func="NmzCongruences"/>, and <Ref Func="NmzBasisChange"/>.</Item>219</List>220<P/>221Additionally also the following compute options are accepted as property. They modify what and how should be computed, and return True after a successful computation.222<List>223<Item><C>Approximate</C> approximate the rational polytope by an integral polytope, currently only useful in combination with <C>Deg1Elements</C>.</Item>224<Item><C>BottomDecomposition</C> use the best possible triangulation (with respect to the sum of determinants) using the given generators.</Item>225<Item><C>DefaultMode</C> try to compute what is possible and do not throw an exception when something cannot be computed.</Item>226<Item><C>DualMode</C>activates the dual algorithm for the computation of the Hilbert basis and degree2271 elements. Includes <C>HilbertBasis</C>, unless <C>Deg1Elements</C> is set. Often a good choice if you start from constraints.</Item>228<Item><C>KeepOrder</C> forbids to reorder the generators. Blocks <C>BottomDecomposition</C>.</Item>229</List>230<P/>231All the properties above can be given to <Ref Func="NmzCompute"/>. There you can232combine different properties, e.g. give some properties that you would like to know and add some compute options.233<P/>234See the Normaliz manual for a detailed description.235<P/>236</Description>237</ManSection>238239240<ManSection>241<Func Arg="cone" Name="NmzPrintConeProperties" />242<Description>243Print an overview of all known properties of the given cone,244as well as their values.245</Description>246</ManSection>247248249</Section>250251252<Section Label="Chapter_Functions_Section_Cone_properties">253<Heading>Cone properties</Heading>254255<P/>256<ManSection>257<Func Arg="cone" Name="NmzAffineDim" />258<Returns>the affine dimension259</Returns>260<Description>261The affine dimension of the polyhedron in inhomogeneous computations. Its computation is triggered if necessary.262<P/>263This is an alias for <C>NmzConeProperty( cone, "AffineDim" );</C> see <Ref Func="NmzConeProperty"/>.264</Description>265</ManSection>266267268<ManSection>269<Func Arg="cone" Name="NmzClassGroup" />270<Returns>the class group in a special format271</Returns>272<Description>273A normal affine monoid <Math>M</Math> has a well-defined divisor class group.274It is naturally isomorphic to the divisor class group of <Math>K[M]</Math> where <Math>K</Math>275is a field (or any unique factorization domain).276We represent it as a vector where the first entry is the rank. It is277followed by sequence of pairs of entries <M>n,m</M>. Such two entries278represent a free cyclic summand <M>(\mathbb{Z}/n\mathbb{Z})^m</M>.279Not allowed in inhomogeneous computations.280<P/>281This is an alias for <C>NmzConeProperty( cone, "ClassGroup" );</C> see <Ref Func="NmzConeProperty"/>.282</Description>283</ManSection>284285286<ManSection>287<Func Arg="cone" Name="NmzCongruences" />288<Returns>a matrix whose rows represent the congruences289</Returns>290<Description>291The equations, congruences and support hyperplanes together292describe the lattice points of the cone.293<P/>294This is part of the cone property <Q>Sublattice</Q>.295</Description>296</ManSection>297298299<ManSection>300<Func Arg="cone" Name="NmzDeg1Elements" />301<Returns>a matrix whose rows are the degree 1 elements302</Returns>303<Description>304Requires the presence of a grading. Not allowed in inhomogeneous computations.305<P/>306This is an alias for <C>NmzConeProperty( cone, "Deg1Elements" );</C> see <Ref Func="NmzConeProperty"/>.307</Description>308</ManSection>309310311<ManSection>312<Func Arg="cone" Name="NmzDehomogenization" />313<Returns>the dehomgenization vector314</Returns>315<Description>316Only for inhomogeneous computations.317<P/>318This is an alias for <C>NmzConeProperty( cone, "Dehomogenization" );</C> see <Ref Func="NmzConeProperty"/>.319</Description>320</ManSection>321322323<ManSection>324<Func Arg="cone" Name="NmzEmbeddingDimension" />325<Returns>the embedding dimension of the cone326</Returns>327<Description>328The embedding dimension is the dimension of the space in which the329computation is done. It is the number of components of the output vectors.330This value is always known directly after the creation of the cone.331</Description>332</ManSection>333334335<ManSection>336<Func Arg="cone" Name="NmzEquations" />337<Returns>a matrix whose rows represent the equations338</Returns>339<Description>340The equations cut out the linear space generated by the cone.341The equations, congruences and support hyperplanes together342describe the lattice points of the cone.343</Description>344</ManSection>345346347<ManSection>348<Func Arg="cone" Name="NmzExcludedFaces" />349<Returns>a matrix whose rows represent the excluded faces350</Returns>351<Description>352This is an alias for <C>NmzConeProperty( cone, "ExcludedFaces" );</C> see <Ref Func="NmzConeProperty"/>.353</Description>354</ManSection>355356357<ManSection>358<Func Arg="cone" Name="NmzExtremeRays" />359<Returns>a matrix whose rows are the extreme rays360</Returns>361<Description>362This is an alias for <C>NmzConeProperty( cone, "ExtremeRays" );</C> see <Ref Func="NmzConeProperty"/>.363</Description>364</ManSection>365366367<ManSection>368<Func Arg="cone" Name="NmzGenerators" />369<Returns>a matrix whose rows are the generators of <A>cone</A>370</Returns>371<Description>372This is an alias for <C>NmzConeProperty( cone, "Generators" );</C> see <Ref Func="NmzConeProperty"/>.373</Description>374</ManSection>375376377<ManSection>378<Func Arg="cone" Name="NmzGeneratorOfInterior" />379<Returns>a vector representing the generator of the interior of <A>cone</A>380</Returns>381<Description>382If <A>cone</A> is Gorenstein, this function returns the generator of the interior of <A>cone</A>.383If <A>cone</A> is not Gorenstein, an error is raised.384</Description>385</ManSection>386387388<ManSection>389<Func Arg="cone" Name="NmzGrading" />390<Returns>the grading vector391</Returns>392<Description>393This is an alias for <C>NmzConeProperty( cone, "Grading" );</C> see <Ref Func="NmzConeProperty"/>.394</Description>395</ManSection>396397398<ManSection>399<Func Arg="cone" Name="NmzHilbertBasis" />400<Returns>a matrix whose rows are the Hilbert basis elements401</Returns>402<Description>403This is an alias for <C>NmzConeProperty( cone, "HilbertBasis" );</C> see <Ref Func="NmzConeProperty"/>.404</Description>405</ManSection>406407408<ManSection>409<Func Arg="cone" Name="NmzHilbertQuasiPolynomial" />410<Returns>the Hilbert function as a quasipolynomial411</Returns>412<Description>413The Hilbert function counts the lattice points degreewise. The result is a414quasipolynomial <M>Q</M>, that is, a polynomial with periodic coefficients. It is415given as list of polynomials <M>P_0, \ldots, P_{(p-1)}</M> such that <M>Q(i) = P_{(i \bmod p)} (i)</M>.416<P/>417This is an alias for <C>NmzConeProperty( cone, "HilbertQuasiPolynomial" );</C> see <Ref Func="NmzConeProperty"/>.418</Description>419</ManSection>420421422<ManSection>423<Func Arg="cone" Name="NmzHilbertSeries" />424<Returns>the Hilbert series as rational function425</Returns>426<Description>427The result consists of a list with two entries. The first is the numerator428polynomial. In inhomogeneous computations this can also be a Laurent429polynomial. The second list entry represents the denominator. It is a list430of pairs <M>[k_i, l_i]</M>. Such a pair represents the factor <M>(1-t^{k_i})^{l_i}</M>.431<P/>432This is an alias for <C>NmzConeProperty( cone, "HilbertSeries" );</C> see <Ref Func="NmzConeProperty"/>.433</Description>434</ManSection>435436437<ManSection>438<Func Arg="cone" Name="NmzInclusionExclusionData" />439<Returns>inclusion-exclusion data440</Returns>441<Description>442List of faces which are internally have been used in the inclusion-exclusion443scheme. Given as a list pairs. The first pair entry is a key of generators444contained in the face (compare also <Ref Func="NmzTriangulation"/>) and the445multiplicity with which it was considered.446Only available with excluded faces or strict constraints as input.447<P/>448This is an alias for <C>NmzConeProperty( cone, "InclusionExclusionData" );</C> see <Ref Func="NmzConeProperty"/>.449</Description>450</ManSection>451452453<ManSection>454<Func Arg="cone" Name="NmzIsDeg1ExtremeRays" />455<Returns><K>true</K> if all extreme rays have degree 1; <K>false</K> otherwise456</Returns>457<Description>458This is an alias for <C>NmzConeProperty( cone, "IsDeg1ExtremeRays" );</C> see <Ref Func="NmzConeProperty"/>.459</Description>460</ManSection>461462463<ManSection>464<Func Arg="cone" Name="NmzIsDeg1HilbertBasis" />465<Returns><K>true</K> if all Hilbert basis elements have degree 1; <K>false</K> otherwise466</Returns>467<Description>468This is an alias for <C>NmzConeProperty( cone, "IsDeg1HilbertBasis" );</C> see <Ref Func="NmzConeProperty"/>.469</Description>470</ManSection>471472473<ManSection>474<Func Arg="cone" Name="NmzIsGorenstein" />475<Returns>whether the cone is Gorenstein476</Returns>477<Description>478Returns true if <A>cone</A> is Gorenstein, false otherwise.479</Description>480</ManSection>481482483<ManSection>484<Func Arg="cone" Name="NmzIsInhomogeneous" />485<Returns>whether the cone is inhomogeneous486</Returns>487<Description>488This value is always known directly after the creation of the cone.489</Description>490</ManSection>491492493<ManSection>494<Func Arg="cone" Name="NmzIsIntegrallyClosed" />495<Returns><K>true</K> if the cone is integrally closed; <K>false</K> otherwise496</Returns>497<Description>498It is integrally closed when the Hilbert basis is a subset of the original monoid generators. So it is only computable if we have original monoid generators.499<P/>500This is an alias for <C>NmzConeProperty( cone, "IsIntegrallyClosed" );</C> see <Ref Func="NmzConeProperty"/>.501</Description>502</ManSection>503504505<ManSection>506<Func Arg="cone" Name="NmzIsPointed" />507<Returns><K>true</K> if the cone is pointed; <K>false</K> otherwise508</Returns>509<Description>510This is an alias for <C>NmzConeProperty( cone, "IsPointed" );</C> see <Ref Func="NmzConeProperty"/>.511</Description>512</ManSection>513514515<ManSection>516<Func Arg="cone" Name="NmzIsReesPrimary" />517<Returns><K>true</K> if is the monomial ideal is primary to the irrelevant maximal ideal, <K>false</K> otherwise518</Returns>519<Description>520Only used with the input type <C>rees_algebra</C>.521<P/>522This is an alias for <C>NmzConeProperty( cone, "IsReesPrimary" );</C> see <Ref Func="NmzConeProperty"/>.523</Description>524</ManSection>525526527<ManSection>528<Func Arg="cone" Name="NmzMaximalSubspace" />529<Returns>a matrix whose rows generate the maximale linear subspace530</Returns>531<Description>532This is an alias for <C>NmzConeProperty( cone, "MaximalSubspace" );</C> see <Ref Func="NmzConeProperty"/>.533</Description>534</ManSection>535536537<ManSection>538<Func Arg="cone" Name="NmzModuleGenerators" />539<Returns>a matrix whose rows are the module generators540</Returns>541<Description>542This is an alias for <C>NmzConeProperty( cone, "ModuleGenerators" );</C> see <Ref Func="NmzConeProperty"/>.543</Description>544</ManSection>545546547<ManSection>548<Func Arg="cone" Name="NmzModuleGeneratorsOverOriginalMonoid" />549<Returns>a matrix whose rows are the module generators over the original monoid550</Returns>551<Description>552A minimal system of generators of the integral closure over the original monoid.553Requires the existence of original monoid generators. Not allowed in inhomogeneous computations.554<P/>555This is an alias for <C>NmzConeProperty( cone, "ModuleGeneratorsOverOriginalMonoid" );</C> see <Ref Func="NmzConeProperty"/>.556</Description>557</ManSection>558559560<ManSection>561<Func Arg="cone" Name="NmzModuleRank" />562<Returns>the rank of the module of lattice points in the polyhedron as a module over the recession monoid563</Returns>564<Description>565Only for inhomogeneous computations.566<P/>567This is an alias for <C>NmzConeProperty( cone, "ModuleRank" );</C> see <Ref Func="NmzConeProperty"/>.568</Description>569</ManSection>570571572<ManSection>573<Func Arg="cone" Name="NmzMultiplicity" />574<Description>575This is an alias for <C>NmzConeProperty( cone, "Multiplicity" );</C> see <Ref Func="NmzConeProperty"/>.576</Description>577</ManSection>578579580<ManSection>581<Func Arg="cone" Name="NmzOriginalMonoidGenerators" />582<Returns>a matrix whose rows are the original monoid generators583</Returns>584<Description>585This is an alias for <C>NmzConeProperty( cone, "OriginalMonoidGenerators" );</C> see <Ref Func="NmzConeProperty"/>.586</Description>587</ManSection>588589590<ManSection>591<Func Arg="cone" Name="NmzRank" />592<Returns>the rank of the cone593</Returns>594<Description>595This value is the rank of the lattice generated by the lattice points of the cone.596<P/>597This is part of the cone property <Q>Sublattice</Q>.598</Description>599</ManSection>600601602<ManSection>603<Func Arg="cone" Name="NmzRecessionRank" />604<Returns>the rank of the recession cone605</Returns>606<Description>607Only for inhomogeneous computations.608<P/>609This is an alias for <C>NmzConeProperty( cone, "RecessionRank" );</C> see <Ref Func="NmzConeProperty"/>.610</Description>611</ManSection>612613614<ManSection>615<Func Arg="cone" Name="NmzReesPrimaryMultiplicity" />616<Description>617the multiplicity of a monomial ideal, provided it is primary to the maximal618ideal generated by the indeterminates. Used only with the input type619<C>rees_algebra</C>.620<P/>621This is an alias for <C>NmzConeProperty( cone, "ReesPrimaryMultiplicity" );</C> see <Ref Func="NmzConeProperty"/>.622</Description>623</ManSection>624625626<ManSection>627<Func Arg="cone" Name="NmzSupportHyperplanes" />628<Returns>a matrix whose rows represent the support hyperplanes629</Returns>630<Description>631The equations cut out the linear space generated by the cone.632The equations, congruences and support hyperplanes together633describe the lattice points of the cone.634<P/>635This is an alias for <C>NmzConeProperty( cone, "SupportHyperplanes" );</C> see <Ref Func="NmzConeProperty"/>.636</Description>637</ManSection>638639640<ManSection>641<Func Arg="cone" Name="NmzTriangulation" />642<Returns>the triangulation643</Returns>644<Description>645This returns a list of the maximal simplicial cones in a triangulation, i.e., a list of cones dividing the646cone into simplicial cones. Each cone in the list is represented by a pair.647The first entry of such a pair is the key of the simplex, i.e., a list of integers <Math>a_1,\dots,a_n</Math>648referring to the <Ref Func="NmzGenerators"/> (counting from 0) which are used in this simplicial cone.649The second entry of each pair in the list is the absolute value of the determinant of the generator matrix of the simplicial cone.650<P/>651This is an alias for <C>NmzConeProperty( cone, "Triangulation" );</C> see <Ref Func="NmzConeProperty"/>.652</Description>653</ManSection>654655656<ManSection>657<Func Arg="cone" Name="NmzTriangulationDetSum" />658<Returns>sum of the absolute values of the determinants of the simplicial cones in the used triangulation659</Returns>660<Description>661This is an alias for <C>NmzConeProperty( cone, "TriangulationDetSum" );</C> see <Ref Func="NmzConeProperty"/>.662</Description>663</ManSection>664665666<ManSection>667<Func Arg="cone" Name="NmzTriangulationSize" />668<Returns>the number of simplicial cones in the used triangulation669</Returns>670<Description>671This is an alias for <C>NmzConeProperty( cone, "TriangulationSize" );</C> see <Ref Func="NmzConeProperty"/>.672</Description>673</ManSection>674675676<ManSection>677<Func Arg="cone" Name="NmzVerticesFloat" />678<Returns>a matrix whose rows are the vertices of the polyhedron <A>cone</A> with float coordinates679</Returns>680<Description>681The rows of this matrix represent the vertices of <A>cone</A>, printed as floats for better readability.682The result might be inexact, and should therefore not be used for computations.683</Description>684</ManSection>685686687<ManSection>688<Func Arg="cone" Name="NmzVerticesOfPolyhedron" />689<Returns>a matrix whose rows are the vertices of the polyhedron690</Returns>691<Description>692This is an alias for <C>NmzConeProperty( cone, "VerticesOfPolyhedron" );</C> see <Ref Func="NmzConeProperty"/>.693</Description>694</ManSection>695696697<ManSection>698<Func Arg="cone" Name="NmzConeDecomposition" />699<Description>700This is an alias for NmzConeProperty( cone, "ConeDecomposition" );701</Description>702</ManSection>703704705<ManSection>706<Func Arg="cone" Name="NmzEmbeddingDim" />707<Description>708This is an alias for NmzConeProperty( cone, "EmbeddingDim" );709</Description>710</ManSection>711712713<ManSection>714<Func Arg="cone" Name="NmzExternalIndex" />715<Description>716This is an alias for NmzConeProperty( cone, "ExternalIndex" );717</Description>718</ManSection>719720721<ManSection>722<Func Arg="cone" Name="NmzGradingDenom" />723<Description>724This is an alias for NmzConeProperty( cone, "GradingDenom" );725</Description>726</ManSection>727728729<ManSection>730<Func Arg="cone" Name="NmzIntegerHull" />731<Description>732This is an alias for NmzConeProperty( cone, "IntegerHull" );733</Description>734</ManSection>735736737<ManSection>738<Func Arg="cone" Name="NmzInternalIndex" />739<Description>740This is an alias for NmzConeProperty( cone, "InternalIndex" );741</Description>742</ManSection>743744745<ManSection>746<Func Arg="cone" Name="NmzStanleyDec" />747<Description>748This is an alias for NmzConeProperty( cone, "StanleyDec" );749</Description>750</ManSection>751752753<ManSection>754<Func Arg="cone" Name="NmzSublattice" />755<Description>756This is an alias for NmzConeProperty( cone, "Sublattice" );757</Description>758</ManSection>759760761<ManSection>762<Func Arg="cone" Name="NmzUnitGroupIndex" />763<Description>764This is an alias for NmzConeProperty( cone, "UnitGroupIndex" );765</Description>766</ManSection>767768769<ManSection>770<Func Arg="cone" Name="NmzWeightedEhrhartQuasiPolynomial" />771<Description>772This is an alias for NmzConeProperty( cone, "NmzWeightedEhrhartQuasiPolynomial" );773</Description>774</ManSection>775776777<ManSection>778<Func Arg="cone" Name="NmzWeightedEhrhartSeries" />779<Description>780This is an alias for NmzConeProperty( cone, "NmzWeightedEhrhartSeries" );781</Description>782</ManSection>783784785<ManSection>786<Func Arg="cone" Name="NmzWitnessNotIntegrallyClosed" />787<Description>788This is an alias for NmzConeProperty( cone, "WitnessNotIntegrallyClosed" );789</Description>790</ManSection>791792793<ManSection>794<Func Arg="cone" Name="NmzBasisChange" />795<Returns>a record describing the basis change796</Returns>797<Description>798The result record <C>r</C> has three components:799<C>r.Embedding</C>, <C>r.Projection</C>, and <C>r.Annihilator</C>,800where the embedding <C>A</C> and the projection <C>B</C>801are matrices, and the annihilator <C>c</C> is an integer.802They represent the mapping into the effective lattice803<M>\mathbb{Z}^n \to \mathbb{Z}^r, u \mapsto (uB)/c</M>804and the inverse operation805<M>\mathbb{Z}^r \to \mathbb{Z}^n, v \mapsto vA</M>.806<P/>807This is part of the cone property <Q>Sublattice</Q>.808</Description>809</ManSection>810811812</Section>813814815816</Chapter>817818819820