Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
Project: cocalc-sagemath-dev-slelievre
Views: 41834612[1X NormalizInterface [101X345[1X [5XGAP[105X wrapper for Normaliz [101X6781.0.2910113 December 2017121314Sebastian Gutsche1516Max Horn1718Christof Söger19202122Sebastian Gutsche23Email: [7Xmailto:[email protected][107X24Homepage: [7Xhttp://wwwb.math.rwth-aachen.de/~gutsche/[107X25Address: [33X[0;14YDepartment of Mathematics[133X26[33X[0;14YUniversity of Siegen[133X27[33X[0;14Y57072 Kaiserslautern[133X28[33X[0;14YGermany[133X293031Max Horn32Email: [7Xmailto:[email protected][107X33Homepage: [7Xhttp://www.quendi.de/math[107X34Address: [33X[0;14YAG Algebra[133X35[33X[0;14YMathematisches Institut[133X36[33X[0;14YJustus-Liebig-Universität Gießen[133X37[33X[0;14YArndtstraße 2[133X38[33X[0;14Y35392 Gießen[133X39[33X[0;14YGermany[133X404142Christof Söger43Email: [7Xmailto:[email protected][107X44Homepage: [7Xhttps://www.normaliz.uni-osnabrueck.de[107X45Address: [33X[0;14YInstitut für Mathematik[133X46[33X[0;14YAlbrechtstr. 28a[133X47[33X[0;14Y49076 Osnabrück[133X48[33X[0;14YGermany[133X49505152-------------------------------------------------------535455[1XContents (NormalizInterface)[101X56571 [33X[0;0YIntroduction[133X581.1 [33X[0;0YWhat is the purpose of the this package?[133X592 [33X[0;0YFunctions[133X602.1 [33X[0;0YCreate a NmzCone[133X612.1-1 NmzCone622.2 [33X[0;0YUse a NmzCone[133X632.2-1 NmzHasConeProperty642.2-2 NmzKnownConeProperties652.2-3 NmzSetVerboseDefault662.2-4 NmzSetVerbose672.2-5 NmzCompute682.2-6 NmzConeProperty692.2-7 NmzPrintConeProperties702.3 [33X[0;0YCone properties[133X712.3-1 NmzAffineDim722.3-2 NmzClassGroup732.3-3 NmzCongruences742.3-4 NmzDeg1Elements752.3-5 NmzDehomogenization762.3-6 NmzEmbeddingDimension772.3-7 NmzEquations782.3-8 NmzExcludedFaces792.3-9 NmzExtremeRays802.3-10 NmzGenerators812.3-11 NmzGeneratorOfInterior822.3-12 NmzGrading832.3-13 NmzHilbertBasis842.3-14 NmzHilbertQuasiPolynomial852.3-15 NmzHilbertSeries862.3-16 NmzInclusionExclusionData872.3-17 NmzIsDeg1ExtremeRays882.3-18 NmzIsDeg1HilbertBasis892.3-19 NmzIsGorenstein902.3-20 NmzIsInhomogeneous912.3-21 NmzIsIntegrallyClosed922.3-22 NmzIsPointed932.3-23 NmzIsReesPrimary942.3-24 NmzMaximalSubspace952.3-25 NmzModuleGenerators962.3-26 NmzModuleGeneratorsOverOriginalMonoid972.3-27 NmzModuleRank982.3-28 NmzMultiplicity992.3-29 NmzOriginalMonoidGenerators1002.3-30 NmzRank1012.3-31 NmzRecessionRank1022.3-32 NmzReesPrimaryMultiplicity1032.3-33 NmzSupportHyperplanes1042.3-34 NmzTriangulation1052.3-35 NmzTriangulationDetSum1062.3-36 NmzTriangulationSize1072.3-37 NmzVerticesFloat1082.3-38 NmzVerticesOfPolyhedron1092.3-39 NmzConeDecomposition1102.3-40 NmzEmbeddingDim1112.3-41 NmzExternalIndex1122.3-42 NmzGradingDenom1132.3-43 NmzIntegerHull1142.3-44 NmzInternalIndex1152.3-45 NmzStanleyDec1162.3-46 NmzSublattice1172.3-47 NmzUnitGroupIndex1182.3-48 NmzWeightedEhrhartQuasiPolynomial1192.3-49 NmzWeightedEhrhartSeries1202.3-50 NmzWitnessNotIntegrallyClosed1212.3-51 NmzBasisChange1223 [33X[0;0YExamples[133X1233.1 [33X[0;0YGenerators[133X1243.2 [33X[0;0YSystem of equations[133X1253.3 [33X[0;0YSystem of inhomogeneous equations[133X1263.4 [33X[0;0YCombined input[133X1273.5 [33X[0;0YUsing the dual mode[133X1284 [33X[0;0YInstalling NormalizInterface[133X1294.1 [33X[0;0YCompiling[133X130131132[32X133134135