Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
Project: cocalc-sagemath-dev-slelievre
Views: 4183461[1X2 [33X[0;0YFunctions[133X[101X23[33X[0;0YIn this chapter we describe the functions offered by [3XNormalizInterface[103X. All4functions supplied by this package start with [21XNmz[121X. For examples see the5chapter [14X'[33X[0;0YExamples[133X'[114X.[133X678[1X2.1 [33X[0;0YCreate a NmzCone[133X[101X910[33X[0;0YTo create a cone object use [3XNmzCone[103X.[133X1112[1X2.1-1 NmzCone[101X1314[29X[2XNmzCone[102X( [3Xlist[103X ) [32X function15[6XReturns:[106X [33X[0;10YNmzCone[133X1617[33X[0;0YCreates a NmzCone. The [3Xlist[103X argument should contain an even number of18elements, alternating between a string and a integer matrix. The string has19to correspond to a Normaliz input type string and the following matrix will20be interpreted as input of that type.[133X2122[33X[0;0YCurrently the following strings are recognized:[133X2324[30X [33X[0;6Y[10Xintegral_closure[110X,[133X2526[30X [33X[0;6Y[10Xpolyhedron[110X,[133X2728[30X [33X[0;6Y[10Xnormalization[110X,[133X2930[30X [33X[0;6Y[10Xpolytope[110X,[133X3132[30X [33X[0;6Y[10Xrees_algebra[110X,[133X3334[30X [33X[0;6Y[10Xinequalities[110X,[133X3536[30X [33X[0;6Y[10Xstrict_inequalities[110X,[133X3738[30X [33X[0;6Y[10Xsigns[110X,[133X3940[30X [33X[0;6Y[10Xstrict_signs[110X,[133X4142[30X [33X[0;6Y[10Xequations[110X,[133X4344[30X [33X[0;6Y[10Xcongruences[110X,[133X4546[30X [33X[0;6Y[10Xinhom_inequalities[110X,[133X4748[30X [33X[0;6Y[10Xinhom_equations[110X,[133X4950[30X [33X[0;6Y[10Xinhom_congruences[110X,[133X5152[30X [33X[0;6Y[10Xdehomogenization[110X,[133X5354[30X [33X[0;6Y[10Xlattice_ideal[110X,[133X5556[30X [33X[0;6Y[10Xgrading[110X,[133X5758[30X [33X[0;6Y[10Xexcluded_faces[110X,[133X5960[30X [33X[0;6Y[10Xlattice[110X,[133X6162[30X [33X[0;6Y[10Xsaturation[110X,[133X6364[30X [33X[0;6Y[10Xcone[110X,[133X6566[30X [33X[0;6Y[10Xoffset[110X,[133X6768[30X [33X[0;6Y[10Xvertices[110X,[133X6970[30X [33X[0;6Y[10Xsupport_hyperplanes[110X,[133X7172[30X [33X[0;6Y[10Xcone_and_lattice[110X,[133X7374[30X [33X[0;6Y[10Xsubspace[110X.[133X7576[33X[0;0YSee the Normaliz manual for a detailed description.[133X7778[4X[32X Example [32X[104X79[4X[25Xgap>[125X [27Xcone := NmzCone(["integral_closure",[[2,1],[1,3]]]);[127X[104X80[4X[28X<a Normaliz cone>[128X[104X81[4X[32X[104X828384[1X2.2 [33X[0;0YUse a NmzCone[133X[101X8586[1X2.2-1 NmzHasConeProperty[101X8788[29X[2XNmzHasConeProperty[102X( [3Xcone[103X, [3Xproperty[103X ) [32X function89[6XReturns:[106X [33X[0;10Ywhether the cone has already computed the given property[133X9091[33X[0;0YSee [2XNmzConeProperty[102X ([14X2.2-6[114X) for a list of recognized properties.[133X9293[4X[32X Example [32X[104X94[4X[25Xgap>[125X [27XNmzHasConeProperty(cone, "ExtremeRays");[127X[104X95[4X[28Xfalse[128X[104X96[4X[32X[104X9798[1X2.2-2 NmzKnownConeProperties[101X99100[29X[2XNmzKnownConeProperties[102X( [3Xcone[103X ) [32X function101[6XReturns:[106X [33X[0;10Ya list of strings representing the known (computed) cone102properties[133X103104[33X[0;0YGiven a Normaliz cone object, return a list of all properties already105computed for the cone.[133X106107[4X[32X Example [32X[104X108[4X[25Xgap>[125X [27XNmzKnownConeProperties(cone);[127X[104X109[4X[28X[ "Generators", "OriginalMonoidGenerators", "Sublattice" ][128X[104X110[4X[32X[104X111112[1X2.2-3 NmzSetVerboseDefault[101X113114[29X[2XNmzSetVerboseDefault[102X( [3XverboseFlag[103X ) [32X function115[6XReturns:[106X [33X[0;10Ythe previous verbosity[133X116117[33X[0;0YSet the global default verbosity state in libnormaliz. This will influence118all NmzCone created afterwards, but not any existing ones.[133X119120[33X[0;0YSee also [2XNmzSetVerbose[102X ([14X2.2-4[114X)[133X121122[1X2.2-4 NmzSetVerbose[101X123124[29X[2XNmzSetVerbose[102X( [3Xcone[103X, [3XverboseFlag[103X ) [32X function125[6XReturns:[106X [33X[0;10Ythe previous verbosity[133X126127[33X[0;0YSet the verbosity state for a cone.[133X128129[33X[0;0YSee also [2XNmzSetVerboseDefault[102X ([14X2.2-3[114X)[133X130131[1X2.2-5 NmzCompute[101X132133[29X[2XNmzCompute[102X( [3Xcone[103X[, [3Xpropnames[103X] ) [32X function134[6XReturns:[106X [33X[0;10Ya boolean indicating success[133X135136[33X[0;0YStart computing properties of the given cone. The first parameter indicates137a cone object, the second parameter is either a single string, or a list of138strings, which indicate what should be computed.[133X139140[33X[0;0YThe single parameter version is equivalent to [10XNmzCone(cone,141["DefaultMode"])[110X. See [2XNmzConeProperty[102X ([14X2.2-6[114X) for a list of recognized142properties.[133X143144[4X[32X Example [32X[104X145[4X[25Xgap>[125X [27XNmzKnownConeProperties(cone);[127X[104X146[4X[28X[ "Generators", "OriginalMonoidGenerators", "Sublattice" ][128X[104X147[4X[25Xgap>[125X [27XNmzCompute(cone, ["SupportHyperplanes", "IsPointed"]);[127X[104X148[4X[28Xtrue[128X[104X149[4X[25Xgap>[125X [27XNmzKnownConeProperties(cone);[127X[104X150[4X[28X[ "Generators", "ExtremeRays", "SupportHyperplanes", "IsPointed",[128X[104X151[4X[28X "IsDeg1ExtremeRays", "OriginalMonoidGenerators", "Sublattice",[128X[104X152[4X[28X "MaximalSubspace" ][128X[104X153[4X[25Xgap>[125X [27XNmzCompute(cone);[127X[104X154[4X[28Xtrue[128X[104X155[4X[25Xgap>[125X [27XNmzKnownConeProperties(cone);[127X[104X156[4X[28X[ "Generators", "ExtremeRays", "SupportHyperplanes", "TriangulationSize",[128X[104X157[4X[28X "TriangulationDetSum", "HilbertBasis", "IsPointed", "IsDeg1ExtremeRays",[128X[104X158[4X[28X "IsIntegrallyClosed", "OriginalMonoidGenerators", "Sublattice",[128X[104X159[4X[28X "ClassGroup", "MaximalSubspace"][128X[104X160[4X[32X[104X161162[1X2.2-6 NmzConeProperty[101X163164[29X[2XNmzConeProperty[102X( [3Xcone[103X, [3Xproperty[103X ) [32X function165[6XReturns:[106X [33X[0;10Ythe result of the computation, type depends on the property[133X166167[33X[0;0YTriggers the computation of the property of the cone and returns the result.168If the property was already known, it is not recomputed. Currently the169following strings are recognized as properties:[133X170171[30X [33X[0;6Y[10XGenerators[110X see [2XNmzGenerators[102X ([14X2.3-10[114X),[133X172173[30X [33X[0;6Y[10XExtremeRays[110X see [2XNmzExtremeRays[102X ([14X2.3-9[114X),[133X174175[30X [33X[0;6Y[10XVerticesOfPolyhedron[110X see [2XNmzVerticesOfPolyhedron[102X ([14X2.3-38[114X),[133X176177[30X [33X[0;6Y[10XSupportHyperplanes[110X see [2XNmzSupportHyperplanes[102X ([14X2.3-33[114X),[133X178179[30X [33X[0;6Y[10XTriangulationSize[110X see [2XNmzTriangulationSize[102X ([14X2.3-36[114X),[133X180181[30X [33X[0;6Y[10XTriangulationDetSum[110X see [2XNmzTriangulationDetSum[102X ([14X2.3-35[114X),[133X182183[30X [33X[0;6Y[10XTriangulation[110X see [2XNmzTriangulation[102X ([14X2.3-34[114X),[133X184185[30X [33X[0;6Y[10XMultiplicity[110X see [2XNmzMultiplicity[102X ([14X2.3-28[114X),[133X186187[30X [33X[0;6Y[10XRecessionRank[110X see [2XNmzRecessionRank[102X ([14X2.3-31[114X),[133X188189[30X [33X[0;6Y[10XAffineDim[110X see [2XNmzAffineDim[102X ([14X2.3-1[114X),[133X190191[30X [33X[0;6Y[10XModuleRank[110X see [2XNmzModuleRank[102X ([14X2.3-27[114X),[133X192193[30X [33X[0;6Y[10XHilbertBasis[110X see [2XNmzHilbertBasis[102X ([14X2.3-13[114X),[133X194195[30X [33X[0;6Y[10XModuleGenerators[110X see [2XNmzModuleGenerators[102X ([14X2.3-25[114X),[133X196197[30X [33X[0;6Y[10XDeg1Elements[110X see [2XNmzDeg1Elements[102X ([14X2.3-4[114X),[133X198199[30X [33X[0;6Y[10XHilbertSeries[110X see [2XNmzHilbertSeries[102X ([14X2.3-15[114X),[133X200201[30X [33X[0;6Y[10XHilbertQuasiPolynomial[110X see [2XNmzHilbertQuasiPolynomial[102X ([14X2.3-14[114X),[133X202203[30X [33X[0;6Y[10XGrading[110X see [2XNmzGrading[102X ([14X2.3-12[114X),[133X204205[30X [33X[0;6Y[10XIsPointed[110X see [2XNmzIsPointed[102X ([14X2.3-22[114X),[133X206207[30X [33X[0;6Y[10XIsDeg1ExtremeRays[110X see [2XNmzIsDeg1ExtremeRays[102X ([14X2.3-17[114X),[133X208209[30X [33X[0;6Y[10XIsDeg1HilbertBasis[110X see [2XNmzIsDeg1HilbertBasis[102X ([14X2.3-18[114X),[133X210211[30X [33X[0;6Y[10XIsIntegrallyClosed[110X see [2XNmzIsIntegrallyClosed[102X ([14X2.3-21[114X),[133X212213[30X [33X[0;6Y[10XOriginalMonoidGenerators[110X see [2XNmzOriginalMonoidGenerators[102X ([14X2.3-29[114X),[133X214215[30X [33X[0;6Y[10XIsReesPrimary[110X see [2XNmzIsReesPrimary[102X ([14X2.3-23[114X),[133X216217[30X [33X[0;6Y[10XReesPrimaryMultiplicity[110X see [2XNmzReesPrimaryMultiplicity[102X ([14X2.3-32[114X),[133X218219[30X [33X[0;6Y[10XExcludedFaces[110X see [2XNmzExcludedFaces[102X ([14X2.3-8[114X),[133X220221[30X [33X[0;6Y[10XDehomogenization[110X see [2XNmzDehomogenization[102X ([14X2.3-5[114X),[133X222223[30X [33X[0;6Y[10XInclusionExclusionData[110X see [2XNmzInclusionExclusionData[102X ([14X2.3-16[114X),[133X224225[30X [33X[0;6Y[10XClassGroup[110X see [2XNmzClassGroup[102X ([14X2.3-2[114X),[133X226227[30X [33X[0;6Y[10XModuleGeneratorsOverOriginalMonoid[110X see228[2XNmzModuleGeneratorsOverOriginalMonoid[102X ([14X2.3-26[114X),[133X229230[30X [33X[0;6Y[10XSublattice[110X computes the efficient sublattice and returns a bool231signaling whether the computation was successful. Actual data232connected to it can be accessed by [2XNmzRank[102X ([14X2.3-30[114X), [2XNmzEquations[102X233([14X2.3-7[114X), [2XNmzCongruences[102X ([14X2.3-3[114X), and [2XNmzBasisChange[102X ([14X2.3-51[114X).[133X234235[33X[0;0YAdditionally also the following compute options are accepted as property.236They modify what and how should be computed, and return True after a237successful computation.[133X238239[30X [33X[0;6Y[10XApproximate[110X approximate the rational polytope by an integral polytope,240currently only useful in combination with [10XDeg1Elements[110X.[133X241242[30X [33X[0;6Y[10XBottomDecomposition[110X use the best possible triangulation (with respect243to the sum of determinants) using the given generators.[133X244245[30X [33X[0;6Y[10XDefaultMode[110X try to compute what is possible and do not throw an246exception when something cannot be computed.[133X247248[30X [33X[0;6Y[10XDualMode[110Xactivates the dual algorithm for the computation of the249Hilbert basis and degree 1 elements. Includes [10XHilbertBasis[110X, unless250[10XDeg1Elements[110X is set. Often a good choice if you start from251constraints.[133X252253[30X [33X[0;6Y[10XKeepOrder[110X forbids to reorder the generators. Blocks254[10XBottomDecomposition[110X.[133X255256[33X[0;0YAll the properties above can be given to [2XNmzCompute[102X ([14X2.2-5[114X). There you can257combine different properties, e.g. give some properties that you would like258to know and add some compute options.[133X259260[33X[0;0YSee the Normaliz manual for a detailed description.[133X261262[1X2.2-7 NmzPrintConeProperties[101X263264[29X[2XNmzPrintConeProperties[102X( [3Xcone[103X ) [32X function265266[33X[0;0YPrint an overview of all known properties of the given cone, as well as267their values.[133X268269270[1X2.3 [33X[0;0YCone properties[133X[101X271272[1X2.3-1 NmzAffineDim[101X273274[29X[2XNmzAffineDim[102X( [3Xcone[103X ) [32X function275[6XReturns:[106X [33X[0;10Ythe affine dimension[133X276277[33X[0;0YThe affine dimension of the polyhedron in inhomogeneous computations. Its278computation is triggered if necessary.[133X279280[33X[0;0YThis is an alias for [10XNmzConeProperty( cone, "AffineDim" );[110X see281[2XNmzConeProperty[102X ([14X2.2-6[114X).[133X282283[1X2.3-2 NmzClassGroup[101X284285[29X[2XNmzClassGroup[102X( [3Xcone[103X ) [32X function286[6XReturns:[106X [33X[0;10Ythe class group in a special format[133X287288[33X[0;0YA normal affine monoid [23XM[123X has a well-defined divisor class group. It is289naturally isomorphic to the divisor class group of [23XK[M][123X where [23XK[123X is a field290(or any unique factorization domain). We represent it as a vector where the291first entry is the rank. It is followed by sequence of pairs of entries [22Xn,m[122X.292Such two entries represent a free cyclic summand [22X(Z/nZ)^m[122X. Not allowed in293inhomogeneous computations.[133X294295[33X[0;0YThis is an alias for [10XNmzConeProperty( cone, "ClassGroup" );[110X see296[2XNmzConeProperty[102X ([14X2.2-6[114X).[133X297298[1X2.3-3 NmzCongruences[101X299300[29X[2XNmzCongruences[102X( [3Xcone[103X ) [32X function301[6XReturns:[106X [33X[0;10Ya matrix whose rows represent the congruences[133X302303[33X[0;0YThe equations, congruences and support hyperplanes together describe the304lattice points of the cone.[133X305306[33X[0;0YThis is part of the cone property [21XSublattice[121X.[133X307308[1X2.3-4 NmzDeg1Elements[101X309310[29X[2XNmzDeg1Elements[102X( [3Xcone[103X ) [32X function311[6XReturns:[106X [33X[0;10Ya matrix whose rows are the degree 1 elements[133X312313[33X[0;0YRequires the presence of a grading. Not allowed in inhomogeneous314computations.[133X315316[33X[0;0YThis is an alias for [10XNmzConeProperty( cone, "Deg1Elements" );[110X see317[2XNmzConeProperty[102X ([14X2.2-6[114X).[133X318319[1X2.3-5 NmzDehomogenization[101X320321[29X[2XNmzDehomogenization[102X( [3Xcone[103X ) [32X function322[6XReturns:[106X [33X[0;10Ythe dehomgenization vector[133X323324[33X[0;0YOnly for inhomogeneous computations.[133X325326[33X[0;0YThis is an alias for [10XNmzConeProperty( cone, "Dehomogenization" );[110X see327[2XNmzConeProperty[102X ([14X2.2-6[114X).[133X328329[1X2.3-6 NmzEmbeddingDimension[101X330331[29X[2XNmzEmbeddingDimension[102X( [3Xcone[103X ) [32X function332[6XReturns:[106X [33X[0;10Ythe embedding dimension of the cone[133X333334[33X[0;0YThe embedding dimension is the dimension of the space in which the335computation is done. It is the number of components of the output vectors.336This value is always known directly after the creation of the cone.[133X337338[1X2.3-7 NmzEquations[101X339340[29X[2XNmzEquations[102X( [3Xcone[103X ) [32X function341[6XReturns:[106X [33X[0;10Ya matrix whose rows represent the equations[133X342343[33X[0;0YThe equations cut out the linear space generated by the cone. The equations,344congruences and support hyperplanes together describe the lattice points of345the cone.[133X346347[1X2.3-8 NmzExcludedFaces[101X348349[29X[2XNmzExcludedFaces[102X( [3Xcone[103X ) [32X function350[6XReturns:[106X [33X[0;10Ya matrix whose rows represent the excluded faces[133X351352[33X[0;0YThis is an alias for [10XNmzConeProperty( cone, "ExcludedFaces" );[110X see353[2XNmzConeProperty[102X ([14X2.2-6[114X).[133X354355[1X2.3-9 NmzExtremeRays[101X356357[29X[2XNmzExtremeRays[102X( [3Xcone[103X ) [32X function358[6XReturns:[106X [33X[0;10Ya matrix whose rows are the extreme rays[133X359360[33X[0;0YThis is an alias for [10XNmzConeProperty( cone, "ExtremeRays" );[110X see361[2XNmzConeProperty[102X ([14X2.2-6[114X).[133X362363[1X2.3-10 NmzGenerators[101X364365[29X[2XNmzGenerators[102X( [3Xcone[103X ) [32X function366[6XReturns:[106X [33X[0;10Ya matrix whose rows are the generators of [3Xcone[103X[133X367368[33X[0;0YThis is an alias for [10XNmzConeProperty( cone, "Generators" );[110X see369[2XNmzConeProperty[102X ([14X2.2-6[114X).[133X370371[1X2.3-11 NmzGeneratorOfInterior[101X372373[29X[2XNmzGeneratorOfInterior[102X( [3Xcone[103X ) [32X function374[6XReturns:[106X [33X[0;10Ya vector representing the generator of the interior of [3Xcone[103X[133X375376[33X[0;0YIf [3Xcone[103X is Gorenstein, this function returns the generator of the interior377of [3Xcone[103X. If [3Xcone[103X is not Gorenstein, an error is raised.[133X378379[1X2.3-12 NmzGrading[101X380381[29X[2XNmzGrading[102X( [3Xcone[103X ) [32X function382[6XReturns:[106X [33X[0;10Ythe grading vector[133X383384[33X[0;0YThis is an alias for [10XNmzConeProperty( cone, "Grading" );[110X see [2XNmzConeProperty[102X385([14X2.2-6[114X).[133X386387[1X2.3-13 NmzHilbertBasis[101X388389[29X[2XNmzHilbertBasis[102X( [3Xcone[103X ) [32X function390[6XReturns:[106X [33X[0;10Ya matrix whose rows are the Hilbert basis elements[133X391392[33X[0;0YThis is an alias for [10XNmzConeProperty( cone, "HilbertBasis" );[110X see393[2XNmzConeProperty[102X ([14X2.2-6[114X).[133X394395[1X2.3-14 NmzHilbertQuasiPolynomial[101X396397[29X[2XNmzHilbertQuasiPolynomial[102X( [3Xcone[103X ) [32X function398[6XReturns:[106X [33X[0;10Ythe Hilbert function as a quasipolynomial[133X399400[33X[0;0YThe Hilbert function counts the lattice points degreewise. The result is a401quasipolynomial [22XQ[122X, that is, a polynomial with periodic coefficients. It is402given as list of polynomials [22XP_0, ..., P_(p-1)[122X such that [22XQ(i) = P_(i mod p)403(i)[122X.[133X404405[33X[0;0YThis is an alias for [10XNmzConeProperty( cone, "HilbertQuasiPolynomial" );[110X see406[2XNmzConeProperty[102X ([14X2.2-6[114X).[133X407408[1X2.3-15 NmzHilbertSeries[101X409410[29X[2XNmzHilbertSeries[102X( [3Xcone[103X ) [32X function411[6XReturns:[106X [33X[0;10Ythe Hilbert series as rational function[133X412413[33X[0;0YThe result consists of a list with two entries. The first is the numerator414polynomial. In inhomogeneous computations this can also be a Laurent415polynomial. The second list entry represents the denominator. It is a list416of pairs [22X[k_i, l_i][122X. Such a pair represents the factor [22X(1-t^k_i)^l_i[122X.[133X417418[33X[0;0YThis is an alias for [10XNmzConeProperty( cone, "HilbertSeries" );[110X see419[2XNmzConeProperty[102X ([14X2.2-6[114X).[133X420421[1X2.3-16 NmzInclusionExclusionData[101X422423[29X[2XNmzInclusionExclusionData[102X( [3Xcone[103X ) [32X function424[6XReturns:[106X [33X[0;10Yinclusion-exclusion data[133X425426[33X[0;0YList of faces which are internally have been used in the inclusion-exclusion427scheme. Given as a list pairs. The first pair entry is a key of generators428contained in the face (compare also [2XNmzTriangulation[102X ([14X2.3-34[114X)) and the429multiplicity with which it was considered. Only available with excluded430faces or strict constraints as input.[133X431432[33X[0;0YThis is an alias for [10XNmzConeProperty( cone, "InclusionExclusionData" );[110X see433[2XNmzConeProperty[102X ([14X2.2-6[114X).[133X434435[1X2.3-17 NmzIsDeg1ExtremeRays[101X436437[29X[2XNmzIsDeg1ExtremeRays[102X( [3Xcone[103X ) [32X function438[6XReturns:[106X [33X[0;10Y[9Xtrue[109X if all extreme rays have degree 1; [9Xfalse[109X otherwise[133X439440[33X[0;0YThis is an alias for [10XNmzConeProperty( cone, "IsDeg1ExtremeRays" );[110X see441[2XNmzConeProperty[102X ([14X2.2-6[114X).[133X442443[1X2.3-18 NmzIsDeg1HilbertBasis[101X444445[29X[2XNmzIsDeg1HilbertBasis[102X( [3Xcone[103X ) [32X function446[6XReturns:[106X [33X[0;10Y[9Xtrue[109X if all Hilbert basis elements have degree 1; [9Xfalse[109X otherwise[133X447448[33X[0;0YThis is an alias for [10XNmzConeProperty( cone, "IsDeg1HilbertBasis" );[110X see449[2XNmzConeProperty[102X ([14X2.2-6[114X).[133X450451[1X2.3-19 NmzIsGorenstein[101X452453[29X[2XNmzIsGorenstein[102X( [3Xcone[103X ) [32X function454[6XReturns:[106X [33X[0;10Ywhether the cone is Gorenstein[133X455456[33X[0;0YReturns true if [3Xcone[103X is Gorenstein, false otherwise.[133X457458[1X2.3-20 NmzIsInhomogeneous[101X459460[29X[2XNmzIsInhomogeneous[102X( [3Xcone[103X ) [32X function461[6XReturns:[106X [33X[0;10Ywhether the cone is inhomogeneous[133X462463[33X[0;0YThis value is always known directly after the creation of the cone.[133X464465[1X2.3-21 NmzIsIntegrallyClosed[101X466467[29X[2XNmzIsIntegrallyClosed[102X( [3Xcone[103X ) [32X function468[6XReturns:[106X [33X[0;10Y[9Xtrue[109X if the cone is integrally closed; [9Xfalse[109X otherwise[133X469470[33X[0;0YIt is integrally closed when the Hilbert basis is a subset of the original471monoid generators. So it is only computable if we have original monoid472generators.[133X473474[33X[0;0YThis is an alias for [10XNmzConeProperty( cone, "IsIntegrallyClosed" );[110X see475[2XNmzConeProperty[102X ([14X2.2-6[114X).[133X476477[1X2.3-22 NmzIsPointed[101X478479[29X[2XNmzIsPointed[102X( [3Xcone[103X ) [32X function480[6XReturns:[106X [33X[0;10Y[9Xtrue[109X if the cone is pointed; [9Xfalse[109X otherwise[133X481482[33X[0;0YThis is an alias for [10XNmzConeProperty( cone, "IsPointed" );[110X see483[2XNmzConeProperty[102X ([14X2.2-6[114X).[133X484485[1X2.3-23 NmzIsReesPrimary[101X486487[29X[2XNmzIsReesPrimary[102X( [3Xcone[103X ) [32X function488[6XReturns:[106X [33X[0;10Y[9Xtrue[109X if is the monomial ideal is primary to the irrelevant maximal489ideal, [9Xfalse[109X otherwise[133X490491[33X[0;0YOnly used with the input type [10Xrees_algebra[110X.[133X492493[33X[0;0YThis is an alias for [10XNmzConeProperty( cone, "IsReesPrimary" );[110X see494[2XNmzConeProperty[102X ([14X2.2-6[114X).[133X495496[1X2.3-24 NmzMaximalSubspace[101X497498[29X[2XNmzMaximalSubspace[102X( [3Xcone[103X ) [32X function499[6XReturns:[106X [33X[0;10Ya matrix whose rows generate the maximale linear subspace[133X500501[33X[0;0YThis is an alias for [10XNmzConeProperty( cone, "MaximalSubspace" );[110X see502[2XNmzConeProperty[102X ([14X2.2-6[114X).[133X503504[1X2.3-25 NmzModuleGenerators[101X505506[29X[2XNmzModuleGenerators[102X( [3Xcone[103X ) [32X function507[6XReturns:[106X [33X[0;10Ya matrix whose rows are the module generators[133X508509[33X[0;0YThis is an alias for [10XNmzConeProperty( cone, "ModuleGenerators" );[110X see510[2XNmzConeProperty[102X ([14X2.2-6[114X).[133X511512[1X2.3-26 NmzModuleGeneratorsOverOriginalMonoid[101X513514[29X[2XNmzModuleGeneratorsOverOriginalMonoid[102X( [3Xcone[103X ) [32X function515[6XReturns:[106X [33X[0;10Ya matrix whose rows are the module generators over the original516monoid[133X517518[33X[0;0YA minimal system of generators of the integral closure over the original519monoid. Requires the existence of original monoid generators. Not allowed in520inhomogeneous computations.[133X521522[33X[0;0YThis is an alias for [10XNmzConeProperty( cone,523"ModuleGeneratorsOverOriginalMonoid" );[110X see [2XNmzConeProperty[102X ([14X2.2-6[114X).[133X524525[1X2.3-27 NmzModuleRank[101X526527[29X[2XNmzModuleRank[102X( [3Xcone[103X ) [32X function528[6XReturns:[106X [33X[0;10Ythe rank of the module of lattice points in the polyhedron as a529module over the recession monoid[133X530531[33X[0;0YOnly for inhomogeneous computations.[133X532533[33X[0;0YThis is an alias for [10XNmzConeProperty( cone, "ModuleRank" );[110X see534[2XNmzConeProperty[102X ([14X2.2-6[114X).[133X535536[1X2.3-28 NmzMultiplicity[101X537538[29X[2XNmzMultiplicity[102X( [3Xcone[103X ) [32X function539540[33X[0;0YThis is an alias for [10XNmzConeProperty( cone, "Multiplicity" );[110X see541[2XNmzConeProperty[102X ([14X2.2-6[114X).[133X542543[1X2.3-29 NmzOriginalMonoidGenerators[101X544545[29X[2XNmzOriginalMonoidGenerators[102X( [3Xcone[103X ) [32X function546[6XReturns:[106X [33X[0;10Ya matrix whose rows are the original monoid generators[133X547548[33X[0;0YThis is an alias for [10XNmzConeProperty( cone, "OriginalMonoidGenerators" );[110X549see [2XNmzConeProperty[102X ([14X2.2-6[114X).[133X550551[1X2.3-30 NmzRank[101X552553[29X[2XNmzRank[102X( [3Xcone[103X ) [32X function554[6XReturns:[106X [33X[0;10Ythe rank of the cone[133X555556[33X[0;0YThis value is the rank of the lattice generated by the lattice points of the557cone.[133X558559[33X[0;0YThis is part of the cone property [21XSublattice[121X.[133X560561[1X2.3-31 NmzRecessionRank[101X562563[29X[2XNmzRecessionRank[102X( [3Xcone[103X ) [32X function564[6XReturns:[106X [33X[0;10Ythe rank of the recession cone[133X565566[33X[0;0YOnly for inhomogeneous computations.[133X567568[33X[0;0YThis is an alias for [10XNmzConeProperty( cone, "RecessionRank" );[110X see569[2XNmzConeProperty[102X ([14X2.2-6[114X).[133X570571[1X2.3-32 NmzReesPrimaryMultiplicity[101X572573[29X[2XNmzReesPrimaryMultiplicity[102X( [3Xcone[103X ) [32X function574575[33X[0;0Ythe multiplicity of a monomial ideal, provided it is primary to the maximal576ideal generated by the indeterminates. Used only with the input type577[10Xrees_algebra[110X.[133X578579[33X[0;0YThis is an alias for [10XNmzConeProperty( cone, "ReesPrimaryMultiplicity" );[110X see580[2XNmzConeProperty[102X ([14X2.2-6[114X).[133X581582[1X2.3-33 NmzSupportHyperplanes[101X583584[29X[2XNmzSupportHyperplanes[102X( [3Xcone[103X ) [32X function585[6XReturns:[106X [33X[0;10Ya matrix whose rows represent the support hyperplanes[133X586587[33X[0;0YThe equations cut out the linear space generated by the cone. The equations,588congruences and support hyperplanes together describe the lattice points of589the cone.[133X590591[33X[0;0YThis is an alias for [10XNmzConeProperty( cone, "SupportHyperplanes" );[110X see592[2XNmzConeProperty[102X ([14X2.2-6[114X).[133X593594[1X2.3-34 NmzTriangulation[101X595596[29X[2XNmzTriangulation[102X( [3Xcone[103X ) [32X function597[6XReturns:[106X [33X[0;10Ythe triangulation[133X598599[33X[0;0YThis returns a list of the maximal simplicial cones in a triangulation,600i.e., a list of cones dividing the cone into simplicial cones. Each cone in601the list is represented by a pair. The first entry of such a pair is the key602of the simplex, i.e., a list of integers [23Xa_1,\dots,a_n[123X referring to the603[2XNmzGenerators[102X ([14X2.3-10[114X) (counting from 0) which are used in this simplicial604cone. The second entry of each pair in the list is the absolute value of the605determinant of the generator matrix of the simplicial cone.[133X606607[33X[0;0YThis is an alias for [10XNmzConeProperty( cone, "Triangulation" );[110X see608[2XNmzConeProperty[102X ([14X2.2-6[114X).[133X609610[1X2.3-35 NmzTriangulationDetSum[101X611612[29X[2XNmzTriangulationDetSum[102X( [3Xcone[103X ) [32X function613[6XReturns:[106X [33X[0;10Ysum of the absolute values of the determinants of the simplicial614cones in the used triangulation[133X615616[33X[0;0YThis is an alias for [10XNmzConeProperty( cone, "TriangulationDetSum" );[110X see617[2XNmzConeProperty[102X ([14X2.2-6[114X).[133X618619[1X2.3-36 NmzTriangulationSize[101X620621[29X[2XNmzTriangulationSize[102X( [3Xcone[103X ) [32X function622[6XReturns:[106X [33X[0;10Ythe number of simplicial cones in the used triangulation[133X623624[33X[0;0YThis is an alias for [10XNmzConeProperty( cone, "TriangulationSize" );[110X see625[2XNmzConeProperty[102X ([14X2.2-6[114X).[133X626627[1X2.3-37 NmzVerticesFloat[101X628629[29X[2XNmzVerticesFloat[102X( [3Xcone[103X ) [32X function630[6XReturns:[106X [33X[0;10Ya matrix whose rows are the vertices of the polyhedron [3Xcone[103X with631float coordinates[133X632633[33X[0;0YThe rows of this matrix represent the vertices of [3Xcone[103X, printed as floats634for better readability. The result might be inexact, and should therefore635not be used for computations.[133X636637[1X2.3-38 NmzVerticesOfPolyhedron[101X638639[29X[2XNmzVerticesOfPolyhedron[102X( [3Xcone[103X ) [32X function640[6XReturns:[106X [33X[0;10Ya matrix whose rows are the vertices of the polyhedron[133X641642[33X[0;0YThis is an alias for [10XNmzConeProperty( cone, "VerticesOfPolyhedron" );[110X see643[2XNmzConeProperty[102X ([14X2.2-6[114X).[133X644645[1X2.3-39 NmzConeDecomposition[101X646647[29X[2XNmzConeDecomposition[102X( [3Xcone[103X ) [32X function648649[33X[0;0YThis is an alias for NmzConeProperty( cone, "ConeDecomposition" );[133X650651[1X2.3-40 NmzEmbeddingDim[101X652653[29X[2XNmzEmbeddingDim[102X( [3Xcone[103X ) [32X function654655[33X[0;0YThis is an alias for NmzConeProperty( cone, "EmbeddingDim" );[133X656657[1X2.3-41 NmzExternalIndex[101X658659[29X[2XNmzExternalIndex[102X( [3Xcone[103X ) [32X function660661[33X[0;0YThis is an alias for NmzConeProperty( cone, "ExternalIndex" );[133X662663[1X2.3-42 NmzGradingDenom[101X664665[29X[2XNmzGradingDenom[102X( [3Xcone[103X ) [32X function666667[33X[0;0YThis is an alias for NmzConeProperty( cone, "GradingDenom" );[133X668669[1X2.3-43 NmzIntegerHull[101X670671[29X[2XNmzIntegerHull[102X( [3Xcone[103X ) [32X function672673[33X[0;0YThis is an alias for NmzConeProperty( cone, "IntegerHull" );[133X674675[1X2.3-44 NmzInternalIndex[101X676677[29X[2XNmzInternalIndex[102X( [3Xcone[103X ) [32X function678679[33X[0;0YThis is an alias for NmzConeProperty( cone, "InternalIndex" );[133X680681[1X2.3-45 NmzStanleyDec[101X682683[29X[2XNmzStanleyDec[102X( [3Xcone[103X ) [32X function684685[33X[0;0YThis is an alias for NmzConeProperty( cone, "StanleyDec" );[133X686687[1X2.3-46 NmzSublattice[101X688689[29X[2XNmzSublattice[102X( [3Xcone[103X ) [32X function690691[33X[0;0YThis is an alias for NmzConeProperty( cone, "Sublattice" );[133X692693[1X2.3-47 NmzUnitGroupIndex[101X694695[29X[2XNmzUnitGroupIndex[102X( [3Xcone[103X ) [32X function696697[33X[0;0YThis is an alias for NmzConeProperty( cone, "UnitGroupIndex" );[133X698699[1X2.3-48 NmzWeightedEhrhartQuasiPolynomial[101X700701[29X[2XNmzWeightedEhrhartQuasiPolynomial[102X( [3Xcone[103X ) [32X function702703[33X[0;0YThis is an alias for NmzConeProperty( cone,704"NmzWeightedEhrhartQuasiPolynomial" );[133X705706[1X2.3-49 NmzWeightedEhrhartSeries[101X707708[29X[2XNmzWeightedEhrhartSeries[102X( [3Xcone[103X ) [32X function709710[33X[0;0YThis is an alias for NmzConeProperty( cone, "NmzWeightedEhrhartSeries" );[133X711712[1X2.3-50 NmzWitnessNotIntegrallyClosed[101X713714[29X[2XNmzWitnessNotIntegrallyClosed[102X( [3Xcone[103X ) [32X function715716[33X[0;0YThis is an alias for NmzConeProperty( cone, "WitnessNotIntegrallyClosed" );[133X717718[1X2.3-51 NmzBasisChange[101X719720[29X[2XNmzBasisChange[102X( [3Xcone[103X ) [32X function721[6XReturns:[106X [33X[0;10Ya record describing the basis change[133X722723[33X[0;0YThe result record [10Xr[110X has three components: [10Xr.Embedding[110X, [10Xr.Projection[110X, and724[10Xr.Annihilator[110X, where the embedding [10XA[110X and the projection [10XB[110X are matrices, and725the annihilator [10Xc[110X is an integer. They represent the mapping into the726effective lattice [22XZ^n -> Z^r, u ↦ (uB)/c[122X and the inverse operation [22XZ^r ->727Z^n, v ↦ vA[122X.[133X728729[33X[0;0YThis is part of the cone property [21XSublattice[121X.[133X730731732733