Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
Project: cocalc-sagemath-dev-slelievre
Views: 418346gap> START_TEST("NormalizInterface: dual.tst"); # gap> # Based on dual.in gap> M := [ > [ 0, 0, 0, 1, 0, 0, 0 ], > [ 0, 0, 0, 0, 1, 0, 0 ], > [ 0, 0, 0, 0, 0, 1, 0 ], > [ 0, 0, 0, 0, 0, 0, 1 ], > [ 0, 0, 1, 0, 0, 0, 0 ], > [ 0, 1, 0, 0, 0, 0, 0 ], > [ 0, 1, 0, 1, 1, 0, -1 ], > [ 0, 1, 0, 0, 1, 1, -1 ], > [ 0, 1, 1, 0, 0, 1, -1 ], > [ 0, 0, 1, 1, 1, 0, -1 ], > [ 0, 0, 1, 1, 0, 1, -1 ], > [ 0, 1, 1, 1, 1, 1, -2 ], > [ 1, 0, 0, 0, 0, 0, 0 ], > [ 1, 1, 1, 1, 1, 1, -3 ], > [ 1, 0, 0, 1, 0, 1, -1 ], > [ 1, 0, 0, 0, 1, 1, -1 ], > [ 1, 0, 1, 0, 1, 0, -1 ], > [ 1, 0, 1, 1, 1, 1, -2 ], > [ 1, 1, 0, 1, 0, 0, -1 ], > [ 1, 1, 1, 0, 0, 0, -1 ], > [ 1, 1, 1, 1, 0, 1, -2 ], > [ 1, 1, 1, 0, 1, 1, -2 ], > [ 1, 1, 1, 1, 1, 0, -2 ], > [ 1, 1, 0, 1, 1, 1, -2 ], > ];; gap> cone := NmzCone(["inequalities", M]);; gap> NmzCompute(cone); true gap> NmzPrintConeProperties(cone); Generators = [ [ 0, 0, 0, 0, 0, 1, 0 ], [ 0, 0, 0, 0, 1, 0, 0 ], [ 0, 0, 0, 1, 0, 0, 0 ], [ 0, 0, 1, 0, 0, 0, 0 ], [ 0, 0, 1, 1, 0, 1, 1 ], [ 0, 0, 1, 1, 1, 0, 1 ], [ 0, 1, 0, 0, 0, 0, 0 ], [ 0, 1, 0, 0, 1, 1, 1 ], [ 0, 1, 0, 1, 1, 0, 1 ], [ 0, 1, 1, 0, 0, 1, 1 ], [ 1, 0, 0, 0, 0, 0, 0 ], [ 1, 0, 0, 0, 1, 1, 1 ], [ 1, 0, 0, 1, 0, 1, 1 ], [ 1, 0, 1, 0, 1, 0, 1 ], [ 1, 1, 0, 1, 0, 0, 1 ], [ 1, 1, 1, 0, 0, 0, 1 ] ] ExtremeRays = [ [ 0, 0, 0, 0, 0, 1, 0 ], [ 0, 0, 0, 0, 1, 0, 0 ], [ 0, 0, 0, 1, 0, 0, 0 ], [ 0, 0, 1, 0, 0, 0, 0 ], [ 0, 0, 1, 1, 0, 1, 1 ], [ 0, 0, 1, 1, 1, 0, 1 ], [ 0, 1, 0, 0, 0, 0, 0 ], [ 0, 1, 0, 0, 1, 1, 1 ], [ 0, 1, 0, 1, 1, 0, 1 ], [ 0, 1, 1, 0, 0, 1, 1 ], [ 1, 0, 0, 0, 0, 0, 0 ], [ 1, 0, 0, 0, 1, 1, 1 ], [ 1, 0, 0, 1, 0, 1, 1 ], [ 1, 0, 1, 0, 1, 0, 1 ], [ 1, 1, 0, 1, 0, 0, 1 ], [ 1, 1, 1, 0, 0, 0, 1 ] ] SupportHyperplanes = [ [ 0, 0, 0, 0, 0, 0, 1 ], [ 0, 0, 0, 0, 0, 1, 0 ], [ 0, 0, 0, 0, 1, 0, 0 ], [ 0, 0, 0, 1, 0, 0, 0 ], [ 0, 0, 1, 0, 0, 0, 0 ], [ 0, 0, 1, 1, 0, 1, -1 ], [ 0, 0, 1, 1, 1, 0, -1 ], [ 0, 1, 0, 0, 0, 0, 0 ], [ 0, 1, 0, 0, 1, 1, -1 ], [ 0, 1, 0, 1, 1, 0, -1 ], [ 0, 1, 1, 0, 0, 1, -1 ], [ 0, 1, 1, 1, 1, 1, -2 ], [ 1, 0, 0, 0, 0, 0, 0 ], [ 1, 0, 0, 0, 1, 1, -1 ], [ 1, 0, 0, 1, 0, 1, -1 ], [ 1, 0, 1, 0, 1, 0, -1 ], [ 1, 0, 1, 1, 1, 1, -2 ], [ 1, 1, 0, 1, 0, 0, -1 ], [ 1, 1, 0, 1, 1, 1, -2 ], [ 1, 1, 1, 0, 0, 0, -1 ], [ 1, 1, 1, 0, 1, 1, -2 ], [ 1, 1, 1, 1, 0, 1, -2 ], [ 1, 1, 1, 1, 1, 0, -2 ], [ 1, 1, 1, 1, 1, 1, -3 ] ] HilbertBasis = [ [ 0, 0, 0, 0, 0, 1, 0 ], [ 0, 0, 0, 0, 1, 0, 0 ], [ 0, 0, 0, 1, 0, 0, 0 ], [ 0, 0, 1, 0, 0, 0, 0 ], [ 0, 0, 1, 1, 0, 1, 1 ], [ 0, 0, 1, 1, 1, 0, 1 ], [ 0, 1, 0, 0, 0, 0, 0 ], [ 0, 1, 0, 0, 1, 1, 1 ], [ 0, 1, 0, 1, 1, 0, 1 ], [ 0, 1, 1, 0, 0, 1, 1 ], [ 1, 0, 0, 0, 0, 0, 0 ], [ 1, 0, 0, 0, 1, 1, 1 ], [ 1, 0, 0, 1, 0, 1, 1 ], [ 1, 0, 1, 0, 1, 0, 1 ], [ 1, 1, 0, 1, 0, 0, 1 ], [ 1, 1, 1, 0, 0, 0, 1 ], [ 1, 1, 1, 1, 1, 1, 2 ] ] Deg1Elements = [ [ 0, 0, 0, 0, 0, 1, 0 ], [ 0, 0, 0, 0, 1, 0, 0 ], [ 0, 0, 0, 1, 0, 0, 0 ], [ 0, 0, 1, 0, 0, 0, 0 ], [ 0, 0, 1, 1, 0, 1, 1 ], [ 0, 0, 1, 1, 1, 0, 1 ], [ 0, 1, 0, 0, 0, 0, 0 ], [ 0, 1, 0, 0, 1, 1, 1 ], [ 0, 1, 0, 1, 1, 0, 1 ], [ 0, 1, 1, 0, 0, 1, 1 ], [ 1, 0, 0, 0, 0, 0, 0 ], [ 1, 0, 0, 0, 1, 1, 1 ], [ 1, 0, 0, 1, 0, 1, 1 ], [ 1, 0, 1, 0, 1, 0, 1 ], [ 1, 1, 0, 1, 0, 0, 1 ], [ 1, 1, 1, 0, 0, 0, 1 ] ] Sublattice = [ [ [ 1, 0, 0, 0, 0, 0, 0 ], [ 0, 1, 0, 0, 0, 0, 0 ], [ 0, 0, 1, 0, 0, 0, 0 ], [ 0, 0, 0, 1, 0, 0, 0 ], [ 0, 0, 0, 0, 1, 0, 0 ], [ 0, 0, 0, 0, 0, 1, 0 ], [ 0, 0, 0, 0, 0, 0, 1 ] ], [ [ 1, 0, 0, 0, 0, 0, 0 ], [ 0, 1, 0, 0, 0, 0, 0 ], [ 0, 0, 1, 0, 0, 0, 0 ], [ 0, 0, 0, 1, 0, 0, 0 ], [ 0, 0, 0, 0, 1, 0, 0 ], [ 0, 0, 0, 0, 0, 1, 0 ], [ 0, 0, 0, 0, 0, 0, 1 ] ], 1 ] MaximalSubspace = [ ] Grading = [ 1, 1, 1, 1, 1, 1, -2 ] TriangulationSize = 69 TriangulationDetSum = 72 GradingDenom = 1 Multiplicity = 72 Rank = 7 EmbeddingDim = 7 IsPointed = true IsDeg1ExtremeRays = true IsDeg1HilbertBasis = false IsInhomogeneous = false ClassGroup = [ 17 ] HilbertSeries = [ 6*t^4+25*t^3+31*t^2+9*t+1, [ [ 1, 7 ] ] ] HilbertQuasiPolynomial = [ 1/10*t^6+41/60*t^5+13/6*t^4+49/12*t^3+71/15*t^2+97/30*t+1 ] IsTriangulationNested = false IsTriangulationPartial = false # gap> STOP_TEST("dual.tst", 0);