Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
Project: cocalc-sagemath-dev-slelievre
Views: 418346gap> START_TEST("NormalizInterface: lattice_ideal.tst"); # gap> M := [ > [ 2, 1, 0, -1, -1, -1 ], > [ 1, 0, -1, 2, -1, -1 ], > [ 1, 1, 1, 0, -2, -1 ], > ];; gap> cone := NmzCone(["lattice_ideal", M]);; gap> NmzCompute(cone); true gap> NmzPrintConeProperties(cone); Generators = [ [ 0, 0, 1 ], [ 0, 1, 0 ], [ 1, 0, 3 ], [ 1, 2, 1 ], [ 1, 3, 0 ], [ 3, 5, 2 ] ] ExtremeRays = [ [ 0, 0, 1 ], [ 0, 1, 0 ], [ 1, 0, 3 ], [ 1, 3, 0 ], [ 3, 5, 2 ] ] SupportHyperplanes = [ [ -15, 7, 5 ], [ -3, 1, 2 ], [ 0, 0, 1 ], [ 0, 1, 0 ], [ 1, 0, 0 ] ] HilbertBasis = [ [ 0, 0, 1 ], [ 0, 1, 0 ], [ 1, 0, 3 ], [ 1, 1, 2 ], [ 1, 2, 1 ], [ 1, 3, 0 ], [ 2, 3, 2 ], [ 2, 4, 1 ], [ 3, 5, 2 ] ] Deg1Elements = [ [ 0, 0, 1 ], [ 0, 1, 0 ], [ 1, 0, 3 ], [ 1, 1, 2 ], [ 1, 2, 1 ], [ 1, 3, 0 ], [ 2, 3, 2 ], [ 2, 4, 1 ], [ 3, 5, 2 ] ] Sublattice = [ [ [ 1, 0, 0 ], [ 0, 1, 0 ], [ 0, 0, 1 ] ], [ [ 1, 0, 0 ], [ 0, 1, 0 ], [ 0, 0, 1 ] ], 1 ] OriginalMonoidGenerators = [ [ 0, 0, 1 ], [ 3, 5, 2 ], [ 0, 1, 0 ], [ 1, 2, 1 ], [ 1, 3, 0 ], [ 1, 0, 3 ] ] MaximalSubspace = [ ] Grading = [ -2, 1, 1 ] TriangulationSize = 5 TriangulationDetSum = 10 GradingDenom = 1 UnitGroupIndex = 1 InternalIndex = 1 Multiplicity = 10 Rank = 3 EmbeddingDim = 3 IsPointed = true IsDeg1ExtremeRays = true IsDeg1HilbertBasis = true IsIntegrallyClosed = false IsInhomogeneous = false ClassGroup = [ 2 ] HilbertSeries = [ 3*t^2+6*t+1, [ [ 1, 3 ] ] ] HilbertQuasiPolynomial = [ 5*t^2+3*t+1 ] IsTriangulationNested = false IsTriangulationPartial = false # gap> STOP_TEST("lattice_ideal.tst", 0);