CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutSign UpSign In

Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.

| Download

GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it

Views: 418346
1
<?xml version="1.0" encoding="UTF-8"?>
2
<Section>
3
<Heading>Presentations of Numerical Semigroups</Heading>
4
5
<ManSection>
6
7
<Func Arg="S" Name="MinimalPresentationOfNumericalSemigroup"></Func>
8
<Oper Arg="S" Name="MinimalPresentation" Label="for numerical semigroups"></Oper>
9
<Description>
10
<A>S</A> is a numerical semigroup.
11
12
The output is a list of lists with two elements. Each list of two elements represents
13
a relation between the minimal generators of the numerical semigroup. If
14
<M> \{ \{x_1,y_1\},\ldots,\{x_k,y_k\}\} </M> is the output
15
and <M> \{m_1,\ldots,m_n\} </M> is the minimal system of generators
16
of the numerical semigroup, then
17
<M> \{x_i,y_i\}=\{\{a_{i_1},\ldots,a_{i_n}\},\{b_{i_1},\ldots,b_{i_n}\}\}</M>
18
and <M> a_{i_1}m_1+\cdots+a_{i_n}m_n= b_{i_1}m_1+ \cdots +b_{i_n}m_n.</M>
19
<P/>
20
21
Any other relation among the minimal generators of the semigroup can be deduced from
22
the ones given in the output.
23
<P/>
24
25
The algorithm implemented is described in <Cite Key="Ros96"></Cite>
26
(see also <Cite Key="RGS99"></Cite>).
27
28
<Example><![CDATA[
29
gap> s:=NumericalSemigroup(3,5,7);
30
<Numerical semigroup with 3 generators>
31
gap> MinimalPresentationOfNumericalSemigroup(s);
32
[ [ [ 0, 2, 0 ], [ 1, 0, 1 ] ], [ [ 3, 1, 0 ], [ 0, 0, 2 ] ],
33
[ [ 4, 0, 0 ], [ 0, 1, 1 ] ] ]
34
]]></Example>
35
The first element in the list means that <M> 1\times 3+1\times 7=2\times 5 </M>,
36
and the others have similar meanings.
37
</Description>
38
</ManSection>
39
40
<ManSection>
41
<Func Arg="n, S" Name="GraphAssociatedToElementInNumericalSemigroup"></Func>
42
<Description>
43
<A>S</A> is a numerical semigroup and <A>n</A> is an element in <A>S</A>.
44
<P/>
45
The output is a pair. If <M> \{m_1,\ldots,m_n\} </M> is the set of minimal
46
generators of <A>S</A>, then the first component is the set of vertices of the graph
47
associated to <A>n</A> in <A>S</A>, that is, the set
48
<M>\{ m_i \ |\ n-m_i\in S\} </M>,
49
and the second component is the set of edges of this graph, that is,
50
<M> \{ \{m_i,m_j\} \ |\ n-(m_i+m_j)\in S\}.</M>
51
52
<P/>
53
This function is used to compute a minimal presentation of the numerical semigroup
54
<A>S</A>, as explained in <Cite Key="Ros96"></Cite>.
55
<Example><![CDATA[
56
gap> s:=NumericalSemigroup(3,5,7);;
57
gap> GraphAssociatedToElementInNumericalSemigroup(10,s);
58
[ [ 3, 5, 7 ], [ [ 3, 7 ] ] ]
59
]]></Example>
60
</Description>
61
</ManSection>
62
63
<ManSection>
64
<Func Arg="S" Name="BettiElementsOfNumericalSemigroup"></Func>
65
<Oper Arg="S" Name="BettiElements" Label="of numerical semigroup"></Oper>
66
<Description>
67
<A>S</A> is a numerical semigroup.
68
<P/>
69
The output is the set of elements in <A>S</A> whose associated graph is nonconnected <Cite Key="GS-O"></Cite>.
70
<Example><![CDATA[
71
gap> s:=NumericalSemigroup(3,5,7);;
72
gap> BettiElementsOfNumericalSemigroup(s);
73
[ 10, 12, 14 ]
74
]]></Example>
75
</Description>
76
</ManSection>
77
78
<ManSection>
79
<Func Arg="S" Name="PrimitiveElementsOfNumericalSemigroup"></Func>
80
<Description>
81
<A>S</A> is a numerical semigroup.
82
<P/>
83
The output is the set of elements <M>s</M> in <A>S</A> such that there exists a minimal solution to <M>msg\cdot x-msg\cdot y = 0</M>, such that <M>x,y</M> are factorizations of <M>s</M>, and <M>msg</M> is the minimal generating system of <A>S</A>. Betti elements are primitive, but not the way around in general.
84
<Example><![CDATA[
85
gap> s:=NumericalSemigroup(3,5,7);;
86
gap> PrimitiveElementsOfNumericalSemigroup(s);
87
[ 3, 5, 7, 10, 12, 14, 15, 21, 28, 35 ]
88
]]></Example>
89
</Description>
90
</ManSection>
91
92
93
<ManSection Label="shadedset">
94
<Func Arg="n, S" Name="ShadedSetOfElementInNumericalSemigroup"></Func>
95
<Description>
96
<A>S</A> is a numerical semigroup and <A>n</A> is an element in <A>S</A>.
97
98
<P/>
99
The output is a simplicial complex <M>C</M>. If <M> \{m_1,\ldots,m_n\} </M> is the set of minimal
100
generators of <A>S</A>, then <M>L \in C</M> if
101
<M>n-\sum_{i\in L} m_i\in S</M> (<Cite Key="SzW"></Cite>).
102
<P/>
103
This function is a generalization of the graph associated to <A>n</A>.
104
105
<Example><![CDATA[
106
gap> s:=NumericalSemigroup(3,5,7);;
107
gap> ShadedSetOfElementInNumericalSemigroup(10,s);
108
[ [ ], [ 3 ], [ 3, 7 ], [ 5 ], [ 7 ] ]
109
]]></Example>
110
</Description>
111
</ManSection>
112
</Section>
113
114
115
<Section>
116
<Heading>Uniquely Presented Numerical Semigroups</Heading>
117
118
A numerical semigroup <M>S</M> is uniquely presented if for any two minimal presentations <M>\sigma</M> and <M>\tau</M> and any <M>(a,b)\in \sigma</M>, either <M>(a,b)\in \tau</M> or <M>(b,a)\in \tau</M>, that is, there is essentially a unique minimal presentation (up to arrangement of the components of the pairs in it).
119
<ManSection Label="UniqPre">
120
<Prop Arg="S" Name="IsUniquelyPresented"></Prop>
121
<Prop Arg="S" Name="IsUniquelyPresentedNumericalSemigroup"></Prop>
122
<Description>
123
<A>S</A> is a numerical semigroup.
124
<P/>
125
The output is true if <A>S</A> has uniquely presented. The implementation is based on (see <Cite Key="GS-O"></Cite>).
126
<Example><![CDATA[
127
gap> s:=NumericalSemigroup(3,5,7);;
128
gap> IsUniquelyPresentedNumericalSemigroup(s);
129
true
130
]]></Example>
131
</Description>
132
</ManSection>
133
134
<ManSection Label="Generic">
135
<Prop Arg="S" Name="IsGeneric" Label="for numerical semigroups"></Prop>
136
<Prop Arg="S" Name="IsGenericNumericalSemigroup"></Prop>
137
<Description>
138
<A>S</A> is a numerical semigroup.
139
<P/>
140
The output is true if <A>S</A> has a generic presentation, that is, in every minimal relation all generators occur. These semigroups are uniquely presented (see <Cite Key="B-GS-G"></Cite>).
141
<Example><![CDATA[
142
gap> s:=NumericalSemigroup(3,5,7);;
143
gap> IsGenericNumericalSemigroup(s);
144
true
145
]]></Example>
146
</Description>
147
</ManSection>
148
</Section>
149
150