Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
Project: cocalc-sagemath-dev-slelievre
Views: 418346<?xml version="1.0" encoding="UTF-8"?>1<Section>2<Heading>Presentations of Numerical Semigroups</Heading>34<ManSection>56<Func Arg="S" Name="MinimalPresentationOfNumericalSemigroup"></Func>7<Oper Arg="S" Name="MinimalPresentation" Label="for numerical semigroups"></Oper>8<Description>9<A>S</A> is a numerical semigroup.1011The output is a list of lists with two elements. Each list of two elements represents12a relation between the minimal generators of the numerical semigroup. If13<M> \{ \{x_1,y_1\},\ldots,\{x_k,y_k\}\} </M> is the output14and <M> \{m_1,\ldots,m_n\} </M> is the minimal system of generators15of the numerical semigroup, then16<M> \{x_i,y_i\}=\{\{a_{i_1},\ldots,a_{i_n}\},\{b_{i_1},\ldots,b_{i_n}\}\}</M>17and <M> a_{i_1}m_1+\cdots+a_{i_n}m_n= b_{i_1}m_1+ \cdots +b_{i_n}m_n.</M>18<P/>1920Any other relation among the minimal generators of the semigroup can be deduced from21the ones given in the output.22<P/>2324The algorithm implemented is described in <Cite Key="Ros96"></Cite>25(see also <Cite Key="RGS99"></Cite>).2627<Example><![CDATA[28gap> s:=NumericalSemigroup(3,5,7);29<Numerical semigroup with 3 generators>30gap> MinimalPresentationOfNumericalSemigroup(s);31[ [ [ 0, 2, 0 ], [ 1, 0, 1 ] ], [ [ 3, 1, 0 ], [ 0, 0, 2 ] ],32[ [ 4, 0, 0 ], [ 0, 1, 1 ] ] ]33]]></Example>34The first element in the list means that <M> 1\times 3+1\times 7=2\times 5 </M>,35and the others have similar meanings.36</Description>37</ManSection>3839<ManSection>40<Func Arg="n, S" Name="GraphAssociatedToElementInNumericalSemigroup"></Func>41<Description>42<A>S</A> is a numerical semigroup and <A>n</A> is an element in <A>S</A>.43<P/>44The output is a pair. If <M> \{m_1,\ldots,m_n\} </M> is the set of minimal45generators of <A>S</A>, then the first component is the set of vertices of the graph46associated to <A>n</A> in <A>S</A>, that is, the set47<M>\{ m_i \ |\ n-m_i\in S\} </M>,48and the second component is the set of edges of this graph, that is,49<M> \{ \{m_i,m_j\} \ |\ n-(m_i+m_j)\in S\}.</M>5051<P/>52This function is used to compute a minimal presentation of the numerical semigroup53<A>S</A>, as explained in <Cite Key="Ros96"></Cite>.54<Example><![CDATA[55gap> s:=NumericalSemigroup(3,5,7);;56gap> GraphAssociatedToElementInNumericalSemigroup(10,s);57[ [ 3, 5, 7 ], [ [ 3, 7 ] ] ]58]]></Example>59</Description>60</ManSection>6162<ManSection>63<Func Arg="S" Name="BettiElementsOfNumericalSemigroup"></Func>64<Oper Arg="S" Name="BettiElements" Label="of numerical semigroup"></Oper>65<Description>66<A>S</A> is a numerical semigroup.67<P/>68The output is the set of elements in <A>S</A> whose associated graph is nonconnected <Cite Key="GS-O"></Cite>.69<Example><![CDATA[70gap> s:=NumericalSemigroup(3,5,7);;71gap> BettiElementsOfNumericalSemigroup(s);72[ 10, 12, 14 ]73]]></Example>74</Description>75</ManSection>7677<ManSection>78<Func Arg="S" Name="PrimitiveElementsOfNumericalSemigroup"></Func>79<Description>80<A>S</A> is a numerical semigroup.81<P/>82The output is the set of elements <M>s</M> in <A>S</A> such that there exists a minimal solution to <M>msg\cdot x-msg\cdot y = 0</M>, such that <M>x,y</M> are factorizations of <M>s</M>, and <M>msg</M> is the minimal generating system of <A>S</A>. Betti elements are primitive, but not the way around in general.83<Example><![CDATA[84gap> s:=NumericalSemigroup(3,5,7);;85gap> PrimitiveElementsOfNumericalSemigroup(s);86[ 3, 5, 7, 10, 12, 14, 15, 21, 28, 35 ]87]]></Example>88</Description>89</ManSection>909192<ManSection Label="shadedset">93<Func Arg="n, S" Name="ShadedSetOfElementInNumericalSemigroup"></Func>94<Description>95<A>S</A> is a numerical semigroup and <A>n</A> is an element in <A>S</A>.9697<P/>98The output is a simplicial complex <M>C</M>. If <M> \{m_1,\ldots,m_n\} </M> is the set of minimal99generators of <A>S</A>, then <M>L \in C</M> if100<M>n-\sum_{i\in L} m_i\in S</M> (<Cite Key="SzW"></Cite>).101<P/>102This function is a generalization of the graph associated to <A>n</A>.103104<Example><![CDATA[105gap> s:=NumericalSemigroup(3,5,7);;106gap> ShadedSetOfElementInNumericalSemigroup(10,s);107[ [ ], [ 3 ], [ 3, 7 ], [ 5 ], [ 7 ] ]108]]></Example>109</Description>110</ManSection>111</Section>112113114<Section>115<Heading>Uniquely Presented Numerical Semigroups</Heading>116117A numerical semigroup <M>S</M> is uniquely presented if for any two minimal presentations <M>\sigma</M> and <M>\tau</M> and any <M>(a,b)\in \sigma</M>, either <M>(a,b)\in \tau</M> or <M>(b,a)\in \tau</M>, that is, there is essentially a unique minimal presentation (up to arrangement of the components of the pairs in it).118<ManSection Label="UniqPre">119<Prop Arg="S" Name="IsUniquelyPresented"></Prop>120<Prop Arg="S" Name="IsUniquelyPresentedNumericalSemigroup"></Prop>121<Description>122<A>S</A> is a numerical semigroup.123<P/>124The output is true if <A>S</A> has uniquely presented. The implementation is based on (see <Cite Key="GS-O"></Cite>).125<Example><![CDATA[126gap> s:=NumericalSemigroup(3,5,7);;127gap> IsUniquelyPresentedNumericalSemigroup(s);128true129]]></Example>130</Description>131</ManSection>132133<ManSection Label="Generic">134<Prop Arg="S" Name="IsGeneric" Label="for numerical semigroups"></Prop>135<Prop Arg="S" Name="IsGenericNumericalSemigroup"></Prop>136<Description>137<A>S</A> is a numerical semigroup.138<P/>139The output is true if <A>S</A> has a generic presentation, that is, in every minimal relation all generators occur. These semigroups are uniquely presented (see <Cite Key="B-GS-G"></Cite>).140<Example><![CDATA[141gap> s:=NumericalSemigroup(3,5,7);;142gap> IsGenericNumericalSemigroup(s);143true144]]></Example>145</Description>146</ManSection>147</Section>148149150