Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
Project: cocalc-sagemath-dev-slelievre
Views: 4183461[1X10 [33X[0;0YPolynomials and numerical semigroups[133X[101X234[1X10.1 [33X[0;0YGenerating functions or Hilbert series[133X[101X56[33X[0;0YLet [22XS[122X be a numerical semigroup. The Hilbert series or generating function7associated to [22XS[122X is [22XH_S(x)=∑_s∈ Sx^s[122X (actually it is the Hilbert function of8the ring [22XK[S][122X with [22XK[122X a field). See for instance [Mor14].[133X910[1X10.1-1 NumericalSemigroupPolynomial[101X1112[29X[2XNumericalSemigroupPolynomial[102X( [3Xs[103X, [3Xx[103X ) [32X function1314[33X[0;0Y[3Xs[103X is a numerical semigroups and [3Xx[103X a variable (or a value to evaluate in).15The output is the polynomial [22X1+(x-1)∑_s∈ N∖ S x^s[122X, which equals [22X(1-x)H_S(x)[122X.[133X1617[4X[32X Example [32X[104X18[4X[25Xgap>[125X [27Xx:=X(Rationals,"x");;[127X[104X19[4X[25Xgap>[125X [27Xs:=NumericalSemigroup(5,7,9);;[127X[104X20[4X[25Xgap>[125X [27XNumericalSemigroupPolynomial(s,x);[127X[104X21[4X[28Xx^14-x^13+x^12-x^11+x^9-x^8+x^7-x^6+x^5-x+1[128X[104X22[4X[32X[104X2324[1X10.1-2 IsNumericalSemigroupPolynomial[101X2526[29X[2XIsNumericalSemigroupPolynomial[102X( [3Xf[103X ) [32X function2728[33X[0;0Y[3Xf[103X is a polynomial in one variable. The output is true if there exists a29numerical semigroup [22XS[122X such that [3Xf[103X equals [22X(1-x)H_S(x)[122X, that is, the30polynomial associated to [22XS[122X (false otherwise).[133X3132[4X[32X Example [32X[104X33[4X[25Xgap>[125X [27Xx:=X(Rationals,"x");;[127X[104X34[4X[25Xgap>[125X [27Xs:=NumericalSemigroup(5,6,7,8);;[127X[104X35[4X[25Xgap>[125X [27Xf:=NumericalSemigroupPolynomial(s,x);[127X[104X36[4X[28Xx^10-x^9+x^5-x+1[128X[104X37[4X[25Xgap>[125X [27XIsNumericalSemigroupPolynomial(f);[127X[104X38[4X[28Xtrue[128X[104X39[4X[32X[104X4041[1X10.1-3 NumericalSemigroupFromNumericalSemigroupPolynomial[101X4243[29X[2XNumericalSemigroupFromNumericalSemigroupPolynomial[102X( [3Xf[103X ) [32X function4445[33X[0;0Y[3Xf[103X is a polynomial associated to a numerical semigroup (otherwise yields46error). The output is the numerical semigroup [22XS[122X such that [3Xf[103X equals47[22X(1-x)H_S(x)[122X.[133X4849[4X[32X Example [32X[104X50[4X[25Xgap>[125X [27Xx:=X(Rationals,"x");;[127X[104X51[4X[25Xgap>[125X [27Xs:=NumericalSemigroup(5,6,7,8);;[127X[104X52[4X[25Xgap>[125X [27Xf:=NumericalSemigroupPolynomial(s,x);[127X[104X53[4X[28Xx^10-x^9+x^5-x+1[128X[104X54[4X[25Xgap>[125X [27XNumericalSemigroupFromNumericalSemigroupPolynomial(f)=s;[127X[104X55[4X[28Xtrue[128X[104X56[4X[32X[104X5758[1X10.1-4 HilbertSeriesOfNumericalSemigroup[101X5960[29X[2XHilbertSeriesOfNumericalSemigroup[102X( [3Xs[103X, [3Xx[103X ) [32X function6162[33X[0;0Y[3Xs[103X is a numerical semigroup and [3Xx[103X a variable (or a value to evaluate in). The63output is the series [22X∑_s∈ S x^s[122X. The series is given as a rational function.[133X6465[4X[32X Example [32X[104X66[4X[25Xgap>[125X [27Xx:=X(Rationals,"x");;[127X[104X67[4X[25Xgap>[125X [27Xs:=NumericalSemigroup(5,7,9);;[127X[104X68[4X[25Xgap>[125X [27XHilbertSeriesOfNumericalSemigroup(s,x);[127X[104X69[4X[28X(x^14-x^13+x^12-x^11+x^9-x^8+x^7-x^6+x^5-x+1)/(-x+1)[128X[104X70[4X[32X[104X7172[1X10.1-5 GraeffePolynomial[101X7374[29X[2XGraeffePolynomial[102X( [3Xp[103X ) [32X function7576[33X[0;0Y[3Xp[103X is a polynomial. Computes the Graeffe polynomial of [3Xp[103X. Needed to test if [3Xp[103X77is a cyclotomic polynomial (see [BD89]).[133X7879[4X[32X Example [32X[104X80[4X[25Xgap>[125X [27Xx:=Indeterminate(Rationals,1);; SetName(x,"x");[127X[104X81[4X[25Xgap>[125X [27XGraeffePolynomial(x^2-1);[127X[104X82[4X[28Xx^2-2*x+1[128X[104X83[4X[32X[104X8485[1X10.1-6 IsCyclotomicPolynomial[101X8687[29X[2XIsCyclotomicPolynomial[102X( [3Xp[103X ) [32X function8889[33X[0;0Y[3Xp[103X is a polynomial. Detects if [3Xp[103X is a cyclotomic polynomial using the90procedure given in [BD89].[133X9192[4X[32X Example [32X[104X93[4X[25Xgap>[125X [27XCyclotomicPolynomial(Rationals,3);[127X[104X94[4X[28Xx^2+x+1[128X[104X95[4X[25Xgap>[125X [27XIsCyclotomicPolynomial(last);[127X[104X96[4X[28Xtrue[128X[104X97[4X[32X[104X9899[1X10.1-7 IsKroneckerPolynomial[101X100101[29X[2XIsKroneckerPolynomial[102X( [3Xp[103X ) [32X function102103[33X[0;0Y[3Xp[103X is a polynomial. Detects if [3Xp[103X is a Kronecker polynomial, that is, a monic104polynomial with integer coefficients having all its roots in the unit105circumference, or equivalently, a product of cyclotomic polynomials. The106current implementation has been done with A. Herrera-Poyatos, following107[BD89].[133X108109[4X[32X Example [32X[104X110[4X[25Xgap>[125X [27Xx:=X(Rationals,"x");;[127X[104X111[4X[25Xgap>[125X [27X s:=NumericalSemigroup(3,5,7);;[127X[104X112[4X[25Xgap>[125X [27X t:=NumericalSemigroup(4,6,9);;[127X[104X113[4X[25Xgap>[125X [27Xp:=NumericalSemigroupPolynomial(s,x);[127X[104X114[4X[28Xx^5-x^4+x^3-x+1[128X[104X115[4X[25Xgap>[125X [27Xq:=NumericalSemigroupPolynomial(t,x);[127X[104X116[4X[28Xx^12-x^11+x^8-x^7+x^6-x^5+x^4-x+1[128X[104X117[4X[25Xgap>[125X [27XIsKroneckerPolynomial(p);[127X[104X118[4X[28Xfalse[128X[104X119[4X[25Xgap>[125X [27XIsKroneckerPolynomial(q);[127X[104X120[4X[28Xtrue[128X[104X121[4X[32X[104X122123[1X10.1-8 IsCyclotomicNumericalSemigroup[101X124125[29X[2XIsCyclotomicNumericalSemigroup[102X( [3Xs[103X ) [32X function126127[33X[0;0Y[3Xs[103X is a numerical semigroup. Detects if the polynomial associated to [3Xs[103X is a128Kronecker polynomial.[133X129130[4X[32X Example [32X[104X131[4X[25Xgap>[125X [27Xl:=CompleteIntersectionNumericalSemigroupsWithFrobeniusNumber(21);;[127X[104X132[4X[25Xgap>[125X [27XForAll(l,IsCyclotomicNumericalSemigroup);[127X[104X133[4X[28Xtrue[128X[104X134[4X[32X[104X135136[1X10.1-9 IsSelfReciprocalUnivariatePolynomial[101X137138[29X[2XIsSelfReciprocalUnivariatePolynomial[102X( [3Xp[103X ) [32X function139140[33X[0;0Y[3Xp[103X is a univariate polynomial. Detects if [3Xp[103X is selfreciprocal. A numerical141semigroup is symmetric if and only if it is selfreciprocal, [Mor14]. The142current implementation is due to A. Herrera-Poyatos.[133X143144[4X[32X Example [32X[104X145[4X[25Xgap>[125X [27Xl:=IrreducibleNumericalSemigroupsWithFrobeniusNumber(13);;[127X[104X146[4X[25Xgap>[125X [27Xx:=X(Rationals,"x");;[127X[104X147[4X[25Xgap>[125X [27XForAll(l, s->[127X[104X148[4X[25X>[125X [27XIsSelfReciprocalUnivariatePolynomial(NumericalSemigroupPolynomial(s,x)));[127X[104X149[4X[28Xtrue[128X[104X150[4X[32X[104X151152153[1X10.2 [33X[0;0YSemigroup of values of algebraic curves[133X[101X154155[33X[0;0YLet [22Xf(x,y)∈ K[x,y][122X, with [22XK[122X an algebraically closed field of characteristic156zero. Let [22Xf(x,y)=y^n+a_1(x)y^n-1+dots+a_n(x)[122X be a nonzero polynomial of157[22XK[x][y][122X. After possibly a change of variables, we may assume that, that158[22Xdeg_x(a_i(x))le i-1[122X for all [22Xi∈{1,..., n}[122X. For [22Xg∈ K[x,y][122X that is not a159multiple of [22Xf[122X, define [22Xmathrmint(f,g)=dim_ K frac K[x,y](f,g)[122X. If [22Xf[122X has one160place at infinity, then the set [22X{mathrmint(f,g)∣ g∈ K[x,y]∖(f)}[122X is a free161numerical semigroup (and thus a complete intersection).[133X162163[1X10.2-1 SemigroupOfValuesOfPlaneCurveWithSinglePlaceAtInfinity[101X164165[29X[2XSemigroupOfValuesOfPlaneCurveWithSinglePlaceAtInfinity[102X( [3Xf[103X ) [32X function166167[33X[0;0Y[3Xf[103X is a polynomial in the variables X(Rationals,1) and X(Rationals,2).168Computes the semigroup [22X{mathrmint(f,g)∣ g∈ K[x,y]∖(f)}[122X, where169[22Xmathrmint(f,g)=dim_ K ( K[x,y]/(f,g))[122X. The algorithm checks if [3Xf[103X has one170place at infinity. If the extra argument "all" is given, then the output is171the [22Xδ[122X-sequence and approximate roots of [3Xf[103X. The method is explained in172[AGS16].[133X173174[4X[32X Example [32X[104X175[4X[25Xgap>[125X [27Xx:=Indeterminate(Rationals,1);; SetName(x,"x");[127X[104X176[4X[25Xgap>[125X [27Xy:=Indeterminate(Rationals,2);; SetName(y,"y");[127X[104X177[4X[25Xgap>[125X [27Xf:=((y^3-x^2)^2-x*y^2)^4-(y^3-x^2);;[127X[104X178[4X[25Xgap>[125X [27XSemigroupOfValuesOfPlaneCurveWithSinglePlaceAtInfinity(f,"all");[127X[104X179[4X[28X[ [ 24, 16, 28, 7 ], [ y, y^3-x^2, y^6-2*x^2*y^3+x^4-x*y^2 ] ][128X[104X180[4X[32X[104X181182[1X10.2-2 IsDeltaSequence[101X183184[29X[2XIsDeltaSequence[102X( [3Xl[103X ) [32X function185186[33X[0;0Y[3Xl[103X is a list of positive integers. Assume that [3Xl[103X equals [22Xa_0,a_1,dots,a_h[122X.187Then [3Xl[103X is a [22Xδ[122X-sequence if [22Xgcd(a_0,..., a_h)=1[122X, [22X⟨ a_0,⋯, a_s⟩[122X is free, [22Xa_kD_k188> a_k+1D_k+1[122X and [22Xa_0> a_1 > D_2 > D_3 > ... > D_h+1[122X, where [22XD_1=a_0[122X,189[22XD_k=gcd(D_k-1,a_k-1)[122X.[133X190191[33X[0;0YEvery [22Xδ[122X-sequence generates a numerical semigroup that is the semigroup of192values of a plane curve with one place at infinity.[133X193194[4X[32X Example [32X[104X195[4X[25Xgap>[125X [27XIsDeltaSequence([24,16,28,7]);[127X[104X196[4X[28Xtrue[128X[104X197[4X[32X[104X198199[1X10.2-3 DeltaSequencesWithFrobeniusNumber[101X200201[29X[2XDeltaSequencesWithFrobeniusNumber[102X( [3Xf[103X ) [32X function202203[33X[0;0Y[3Xf[103X is a positive integer. Computes the set of all [22Xδ[122X-sequences generating204numerical semigroups with Frobenius number [3Xf[103X.[133X205206[4X[32X Example [32X[104X207[4X[25Xgap>[125X [27XDeltaSequencesWithFrobeniusNumber(21);[127X[104X208[4X[28X[ [ 8, 6, 11 ], [ 10, 4, 15 ], [ 12, 8, 6, 11 ], [ 14, 4, 11 ],[128X[104X209[4X[28X [ 15, 10, 4 ], [ 23, 2 ] ][128X[104X210[4X[32X[104X211212[1X10.2-4 CurveAssociatedToDeltaSequence[101X213214[29X[2XCurveAssociatedToDeltaSequence[102X( [3Xl[103X ) [32X function215216[33X[0;0Y[3Xl[103X is a [22Xδ[122X-sequence. Computes a curve in the variables X(Rationals,1) and217X(Rationals,2) whose semigroup of values is generated by the [3Xl[103X.[133X218219[4X[32X Example [32X[104X220[4X[25Xgap>[125X [27XCurveAssociatedToDeltaSequence([24,16,28,7]);[127X[104X221[4X[28Xy^24-8*x^2*y^21+28*x^4*y^18-56*x^6*y^15-4*x*y^20+70*x^8*y^12+24*x^3*y^17-56*x^\[128X[104X222[4X[28X10*y^9-60*x^5*y^14+28*x^12*y^6+80*x^7*y^11+6*x^2*y^16-8*x^14*y^3-60*x^9*y^8-24\[128X[104X223[4X[28X*x^4*y^13+x^16+24*x^11*y^5+36*x^6*y^10-4*x^13*y^2-24*x^8*y^7-4*x^3*y^12+6*x^10\[128X[104X224[4X[28X*y^4+8*x^5*y^9-4*x^7*y^6+x^4*y^8-y^3+x^2[128X[104X225[4X[25Xgap>[125X [27XSemigroupOfValuesOfPlaneCurveWithSinglePlaceAtInfinity(last,"all");[127X[104X226[4X[28X[ [ 24, 16, 28, 7 ], [ y, y^3-x^2, y^6-2*x^2*y^3+x^4-x*y^2 ] ][128X[104X227[4X[32X[104X228229[1X10.2-5 SemigroupOfValuesOfPlaneCurve[101X230231[29X[2XSemigroupOfValuesOfPlaneCurve[102X( [3Xf[103X ) [32X function232233[33X[0;0Y[3Xf[103X is a polynomial in the variables X(Rationals,1) and X(Rationals,2). The234singular package is mandatory. Either by loading it prior to numerical235semigroups or by using [3XNumSgpsUseSingular()[103X. If [22Xf[122X is irreducible, computes236the semigroup [22X{mathrmint(f,g)∣ g∈ K[x,y]∖(f)}[122X, where [22Xmathrmint(f,g)=dim_ K (237K[[x,y]]/(f,g))[122X. If it has two components, the output is the value semigroup238in two variables, and thus a good semigroup. If there are more components,239then the output is that of [3Xsemigroup[103X in the alexpoly singular library.[133X240241[4X[32X Example [32X[104X242[4X[25Xgap>[125X [27Xx:=X(Rationals,"x");; y:=X(Rationals,"y");;[127X[104X243[4X[25Xgap>[125X [27Xf:= y^4-2*x^3*y^2-4*x^5*y+x^6-x^7;[127X[104X244[4X[28X-x^7+x^6-4*x^5*y-2*x^3*y^2+y^4[128X[104X245[4X[25Xgap>[125X [27XSemigroupOfValuesOfPlaneCurve(f);[127X[104X246[4X[28X<Numerical semigroup with 3 generators>[128X[104X247[4X[25Xgap>[125X [27XMinimalGenerators(last);[127X[104X248[4X[28X[ 4, 6, 13 ][128X[104X249[4X[25Xgap>[125X [27Xf:=(y^4-2*x^3*y^2-4*x^5*y+x^6-x^7)*(y^2-x^3);;[127X[104X250[4X[25Xgap>[125X [27XSemigroupOfValuesOfPlaneCurve(f);[127X[104X251[4X[28X<Good semigroup>[128X[104X252[4X[25Xgap>[125X [27XMinimalGenerators(last);[127X[104X253[4X[28X[ [ 4, 2 ], [ 6, 3 ], [ 13, 15 ], [ 29, 13 ] ][128X[104X254[4X[32X[104X255256[1X10.2-6 SemigroupOfValuesOfCurve_Local[101X257258[29X[2XSemigroupOfValuesOfCurve_Local[102X( [3Xarg[103X ) [32X function259260[33X[0;0YThe function admits one or two parameters. In any case, the first is a list261of polynomials [3Xpols[103X. And the second can be the string [3X"basis"[103X or an integer262[3Xval[103X.[133X263264[33X[0;0YIf only one argument is given, the output is the semigroup of all possible265orders of [22XK[[pols]][122X provided that [22XK[[x]]/K[[pols]][122X has finite length. If the266second argument [3X"basis"[103X is given, then the output is a (reduced) basis of267the algebra [22XK[[pols]][122X such that the orders of the basis elements generate268minimally the semigroup of orders of [22XK[[pols]][122X. If an integer [3Xval[103X is the269second argument, then the output is a polynomial in [22XK[[pols]][122X with order [3Xval[103X270([10Xfail[110X if there is no such polynomial, that is, [3Xval[103X is not in the semigroup271of values).[133X272273[33X[0;0YThe method is explained in [AGSM17].[133X274275[4X[32X Example [32X[104X276[4X[25Xgap>[125X [27Xx:=Indeterminate(Rationals,"x");;[127X[104X277[4X[25Xgap>[125X [27XSemigroupOfValuesOfCurve_Local([x^4,x^6+x^7,x^13]);[127X[104X278[4X[28X<Numerical semigroup with 4 generators>[128X[104X279[4X[25Xgap>[125X [27XMinimalGeneratingSystem(last);[127X[104X280[4X[28X[ 4, 6, 13, 15 ][128X[104X281[4X[25Xgap>[125X [27XSemigroupOfValuesOfCurve_Local([x^4,x^6+x^7,x^13], "basis");[127X[104X282[4X[28X[ x^4, x^7+x^6, x^13, x^15 ][128X[104X283[4X[25Xgap>[125X [27XSemigroupOfValuesOfCurve_Local([x^4,x^6+x^7,x^13], 20);[127X[104X284[4X[28Xx^20[128X[104X285[4X[32X[104X286287[1X10.2-7 SemigroupOfValuesOfCurve_Global[101X288289[29X[2XSemigroupOfValuesOfCurve_Global[102X( [3Xarg[103X ) [32X function290291[33X[0;0YThe function admits one or two parameters. In any case, the first is a list292of polynomials [3Xpols[103X. And the second can be the string [3X"basis"[103X or an integer293[3Xval[103X.[133X294295[33X[0;0YIf only one argument is given, the output is the semigroup of all possible296degrees of [22XK[pols][122X provided that [22XK[x]/K[pols][122X has finite length. If the297second argument [3X"basis"[103X is given, then the output is a (reduced) basis of298the algebra [22XK[pols][122X such that the degrees of the basis elements generate299minimally the semigroup of degrees of [22XK[pols][122X. If an integer [3Xval[103X is the300second argument, then the output is a polynomial in [22XK[pols][122X with degree [3Xval[103X301([10Xfail[110X if there is no such polynomial, that is, [3Xval[103X is not in the semigroup302of values).[133X303304[33X[0;0YThe method is explained in [AGSM17].[133X305306[4X[32X Example [32X[104X307[4X[25Xgap>[125X [27Xx:=Indeterminate(Rationals,"x");;[127X[104X308[4X[25Xgap>[125X [27XSemigroupOfValuesOfCurve_Global([x^4,x^6+x^7,x^13]);[127X[104X309[4X[28X<Numerical semigroup with 3 generators>[128X[104X310[4X[25Xgap>[125X [27XMinimalGeneratingSystem(last);[127X[104X311[4X[28X[ 4, 7, 13 ][128X[104X312[4X[25Xgap>[125X [27XSemigroupOfValuesOfCurve_Global([x^4,x^6+x^7,x^13],"basis");[127X[104X313[4X[28X[ x^4, x^7+x^6, x^13 ][128X[104X314[4X[25Xgap>[125X [27XSemigroupOfValuesOfCurve_Global([x^4,x^6+x^7,x^13],12);[127X[104X315[4X[28Xx^12[128X[104X316[4X[25Xgap>[125X [27XSemigroupOfValuesOfCurve_Global([x^4,x^6+x^7,x^13],6);[127X[104X317[4X[28Xfail[128X[104X318[4X[32X[104X319320[1X10.2-8 GeneratorsModule_Global[101X321322[29X[2XGeneratorsModule_Global[102X( [3XA[103X, [3XM[103X ) [32X function323324[33X[0;0Y[3XA[103X and [3XM[103X are lists of polynomials in the same variable. The output is a basis325of the ideal [22XM K[A][122X, that is, a set [22XF[122X such that [22Xdeg(F)[122X generates the ideal326[22Xdeg(M K[A])[122X of [22Xdeg(K[A])[122X, where [22Xdeg[122X stands for degree. The method is327explained in [AAGS17].[133X328329[4X[32X Example [32X[104X330[4X[25Xgap>[125X [27Xt:=Indeterminate(Rationals,"t");;[127X[104X331[4X[25Xgap>[125X [27XA:=[t^6+t,t^4];;[127X[104X332[4X[25Xgap>[125X [27XM:=[t^3,t^4];;[127X[104X333[4X[25Xgap>[125X [27XGeneratorsModule_Global(A,M);[127X[104X334[4X[28X[ t^3, t^4, t^5, t^6 ][128X[104X335[4X[32X[104X336337[1X10.2-9 GeneratorsKahlerDifferentials[101X338339[29X[2XGeneratorsKahlerDifferentials[102X( [3XA[103X, [3XM[103X ) [32X function340341[33X[0;0Y[3XA[103X is a list of polynomials in the same variable. The output is342[3XGeneratorsModule_Global(A,M)[103X, with [3XM[103X the set of derivatives of the elements343in [3XA[103X.[133X344345[4X[32X Example [32X[104X346[4X[25Xgap>[125X [27Xt:=Indeterminate(Rationals,"t");;[127X[104X347[4X[25Xgap>[125X [27XGeneratorsKahlerDifferentials([t^3,t^4]);[127X[104X348[4X[28X[ t^2, t^3 ][128X[104X349[4X[32X[104X350351[1X10.2-10 IsMonomialNumericalSemigroup[101X352353[29X[2XIsMonomialNumericalSemigroup[102X( [3XS[103X ) [32X property354355[33X[0;0Y[3XS[103X is a numerical semigroup. Tests whether [3XS[103X a monomial numerical semigroup.[133X356357[33X[0;0YLet [22XR[122X a Noetherian ring such that [22XK ⊆ R ⊆ K[[t]][122X, [22XK[122X is a field of358characteristic zero, the algebraic closure of [22XR[122X is [22XK[[t]][122X, and the conductor359[22X(R : K[[t]])[122X is not zero. If [22Xv : K((t))-> Z[122X is the natural valuation for360[22XK((t))[122X, then [22Xv(R)[122X is a numerical semigroup.[133X361362[33X[0;0YLet [22XS[122X be a numerical semigroup minimally generated by [22X{n_1,...,n_e}[122X. The363semigroup ring associated to [22XS[122X is [22XK[[S]]=K[[t^n_1,...,t^n_e]][122X. A ring is364called a semigroup ring if it is of the form [22XK[[S]][122X, for some numerical365semigroup [22XS[122X. We say that [22XS[122X is a monomial numerical semigroup if for any [22XR[122X as366above with [22Xv(R)=S[122X, [22XR[122X is a semigroup ring. See [Mic02] for details.[133X367368[4X[32X Example [32X[104X369[4X[25Xgap>[125X [27XIsMonomialNumericalSemigroup(NumericalSemigroup(4,6,7));[127X[104X370[4X[28Xtrue[128X[104X371[4X[25Xgap>[125X [27XIsMonomialNumericalSemigroup(NumericalSemigroup(4,6,11));[127X[104X372[4X[28Xfalse[128X[104X373[4X[32X[104X374375376377