Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
Project: cocalc-sagemath-dev-slelievre
Views: 4183461[1X4 [33X[0;0YPresentations of Numerical Semigroups[133X[101X23[33X[0;0YIn this chapter we explain how to compute a minimal presentation of a4numerical semigroup. There are three functions involved in this process.[133X567[1X4.1 [33X[0;0YPresentations of Numerical Semigroups[133X[101X89[1X4.1-1 MinimalPresentationOfNumericalSemigroup[101X1011[29X[2XMinimalPresentationOfNumericalSemigroup[102X( [3XS[103X ) [32X function12[29X[2XMinimalPresentation[102X( [3XS[103X ) [32X operation1314[33X[0;0Y[3XS[103X is a numerical semigroup. The output is a list of lists with two elements.15Each list of two elements represents a relation between the minimal16generators of the numerical semigroup. If [22X{ {x_1,y_1},...,{x_k,y_k}}[122X is the17output and [22X{m_1,...,m_n}[122X is the minimal system of generators of the18numerical semigroup, then [22X{x_i,y_i}={{a_i_1,...,a_i_n},{b_i_1,...,b_i_n}}[122X19and [22Xa_i_1m_1+⋯+a_i_nm_n= b_i_1m_1+ ⋯ +b_i_nm_n.[122X[133X2021[33X[0;0YAny other relation among the minimal generators of the semigroup can be22deduced from the ones given in the output.[133X2324[33X[0;0YThe algorithm implemented is described in [Ros96a] (see also [RGS99b]).[133X2526[4X[32X Example [32X[104X27[4X[25Xgap>[125X [27Xs:=NumericalSemigroup(3,5,7);[127X[104X28[4X[28X<Numerical semigroup with 3 generators>[128X[104X29[4X[25Xgap>[125X [27XMinimalPresentationOfNumericalSemigroup(s);[127X[104X30[4X[28X[ [ [ 0, 2, 0 ], [ 1, 0, 1 ] ], [ [ 3, 1, 0 ], [ 0, 0, 2 ] ],[128X[104X31[4X[28X[ [ 4, 0, 0 ], [ 0, 1, 1 ] ] ][128X[104X32[4X[32X[104X3334[33X[0;0YThe first element in the list means that [22X1× 3+1× 7=2× 5[122X, and the others have35similar meanings.[133X3637[1X4.1-2 GraphAssociatedToElementInNumericalSemigroup[101X3839[29X[2XGraphAssociatedToElementInNumericalSemigroup[102X( [3Xn[103X, [3XS[103X ) [32X function4041[33X[0;0Y[3XS[103X is a numerical semigroup and [3Xn[103X is an element in [3XS[103X.[133X4243[33X[0;0YThe output is a pair. If [22X{m_1,...,m_n}[122X is the set of minimal generators of44[3XS[103X, then the first component is the set of vertices of the graph associated45to [3Xn[103X in [3XS[103X, that is, the set [22X{ m_i | n-m_i∈ S}[122X, and the second component is46the set of edges of this graph, that is, [22X{ {m_i,m_j} | n-(m_i+m_j)∈ S}.[122X[133X4748[33X[0;0YThis function is used to compute a minimal presentation of the numerical49semigroup [3XS[103X, as explained in [Ros96a].[133X5051[4X[32X Example [32X[104X52[4X[25Xgap>[125X [27Xs:=NumericalSemigroup(3,5,7);;[127X[104X53[4X[25Xgap>[125X [27XGraphAssociatedToElementInNumericalSemigroup(10,s);[127X[104X54[4X[28X[ [ 3, 5, 7 ], [ [ 3, 7 ] ] ][128X[104X55[4X[32X[104X5657[1X4.1-3 BettiElementsOfNumericalSemigroup[101X5859[29X[2XBettiElementsOfNumericalSemigroup[102X( [3XS[103X ) [32X function60[29X[2XBettiElements[102X( [3XS[103X ) [32X operation6162[33X[0;0Y[3XS[103X is a numerical semigroup.[133X6364[33X[0;0YThe output is the set of elements in [3XS[103X whose associated graph is65nonconnected [GSO10].[133X6667[4X[32X Example [32X[104X68[4X[25Xgap>[125X [27Xs:=NumericalSemigroup(3,5,7);;[127X[104X69[4X[25Xgap>[125X [27XBettiElementsOfNumericalSemigroup(s);[127X[104X70[4X[28X[ 10, 12, 14 ][128X[104X71[4X[32X[104X7273[1X4.1-4 PrimitiveElementsOfNumericalSemigroup[101X7475[29X[2XPrimitiveElementsOfNumericalSemigroup[102X( [3XS[103X ) [32X function7677[33X[0;0Y[3XS[103X is a numerical semigroup.[133X7879[33X[0;0YThe output is the set of elements [22Xs[122X in [3XS[103X such that there exists a minimal80solution to [22Xmsg⋅ x-msg⋅ y = 0[122X, such that [22Xx,y[122X are factorizations of [22Xs[122X, and81[22Xmsg[122X is the minimal generating system of [3XS[103X. Betti elements are primitive, but82not the way around in general.[133X8384[4X[32X Example [32X[104X85[4X[25Xgap>[125X [27Xs:=NumericalSemigroup(3,5,7);;[127X[104X86[4X[25Xgap>[125X [27XPrimitiveElementsOfNumericalSemigroup(s);[127X[104X87[4X[28X[ 3, 5, 7, 10, 12, 14, 15, 21, 28, 35 ][128X[104X88[4X[32X[104X8990[1X4.1-5 ShadedSetOfElementInNumericalSemigroup[101X9192[29X[2XShadedSetOfElementInNumericalSemigroup[102X( [3Xn[103X, [3XS[103X ) [32X function9394[33X[0;0Y[3XS[103X is a numerical semigroup and [3Xn[103X is an element in [3XS[103X.[133X9596[33X[0;0YThe output is a simplicial complex [22XC[122X. If [22X{m_1,...,m_n}[122X is the set of minimal97generators of [3XS[103X, then [22XL ∈ C[122X if [22Xn-∑_i∈ L m_i∈ S[122X ([SW86]).[133X9899[33X[0;0YThis function is a generalization of the graph associated to [3Xn[103X.[133X100101[4X[32X Example [32X[104X102[4X[25Xgap>[125X [27Xs:=NumericalSemigroup(3,5,7);;[127X[104X103[4X[25Xgap>[125X [27XShadedSetOfElementInNumericalSemigroup(10,s);[127X[104X104[4X[28X[ [ ], [ 3 ], [ 3, 7 ], [ 5 ], [ 7 ] ][128X[104X105[4X[32X[104X106107108[1X4.2 [33X[0;0YUniquely Presented Numerical Semigroups[133X[101X109110[33X[0;0YA numerical semigroup [22XS[122X is uniquely presented if for any two minimal111presentations [22Xσ[122X and [22Xτ[122X and any [22X(a,b)∈ σ[122X, either [22X(a,b)∈ τ[122X or [22X(b,a)∈ τ[122X, that112is, there is essentially a unique minimal presentation (up to arrangement of113the components of the pairs in it).[133X114115[1X4.2-1 IsUniquelyPresented[101X116117[29X[2XIsUniquelyPresented[102X( [3XS[103X ) [32X property118[29X[2XIsUniquelyPresentedNumericalSemigroup[102X( [3XS[103X ) [32X property119120[33X[0;0Y[3XS[103X is a numerical semigroup.[133X121122[33X[0;0YThe output is true if [3XS[103X has uniquely presented. The implementation is based123on (see [GSO10]).[133X124125[4X[32X Example [32X[104X126[4X[25Xgap>[125X [27Xs:=NumericalSemigroup(3,5,7);;[127X[104X127[4X[25Xgap>[125X [27XIsUniquelyPresentedNumericalSemigroup(s);[127X[104X128[4X[28Xtrue[128X[104X129[4X[32X[104X130131[1X4.2-2 IsGeneric[101X132133[29X[2XIsGeneric[102X( [3XS[103X ) [32X property134[29X[2XIsGenericNumericalSemigroup[102X( [3XS[103X ) [32X property135136[33X[0;0Y[3XS[103X is a numerical semigroup.[133X137138[33X[0;0YThe output is true if [3XS[103X has a generic presentation, that is, in every139minimal relation all generators occur. These semigroups are uniquely140presented (see [BGSG11]).[133X141142[4X[32X Example [32X[104X143[4X[25Xgap>[125X [27Xs:=NumericalSemigroup(3,5,7);;[127X[104X144[4X[25Xgap>[125X [27XIsGenericNumericalSemigroup(s);[127X[104X145[4X[28Xtrue[128X[104X146[4X[32X[104X147148149150