CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutSign UpSign In

Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.

| Download

GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it

Views: 418346
1
2
6 Irreducible numerical semigroups
3
4
5
6.1 Irreducible numerical semigroups
6
7
An irreducible numerical semigroup is a semigroup that cannot be expressed
8
as the intersection of numerical semigroups properly containing it.
9
10
It is not difficult to prove that a semigroup is irreducible if and only if
11
it is maximal (with respect to set inclusion) in the set of all numerical
12
semigroups having its same Frobenius number (see [RB03]). Hence, according
13
to [FGR87] (respectively [BDF97]), symmetric (respectively pseudo-symmetric)
14
numerical semigroups are those irreducible numerical semigroups with odd
15
(respectively even) Frobenius number.
16
17
In [RGSGGJM03] it is shown that a nontrivial numerical semigroup is
18
irreducible if and only if it has only one special gap. We use this
19
characterization.
20
21
In this section we show how to construct the set of all numerical semigroups
22
with a given Frobenius number. In old versions of the package, we first
23
constructed an irreducible numerical semigroup with the given Frobenius
24
number (as explained in [RGS04]), and then we constructed the rest from it.
25
That is why we separated both functions. The present version uses a faster
26
procedure presented in [BR13].
27
28
Every numerical semigroup can be expressed as an intersection of irreducible
29
numerical semigroups. If S can be expressed as S=S_1∩ ⋯∩ S_n, with S_i
30
irreducible numerical semigroups, and no factor can be removed, then we say
31
that this decomposition is minimal. Minimal decompositions can be computed
32
by using Algorithm 26 in [RGSGGJM03].
33
34
6.1-1 IsIrreducibleNumericalSemigroup
35
36
IsIrreducibleNumericalSemigroup( s )  property
37
IsIrreducible( s )  property
38
39
s is a numerical semigroup. The output is true if s is irreducible, false
40
otherwise.
41
42
 Example 
43
gap> IsIrreducibleNumericalSemigroup(NumericalSemigroup(4,6,9));
44
true
45
gap> IsIrreducibleNumericalSemigroup(NumericalSemigroup(4,6,7,9));
46
false
47

48
49
6.1-2 IsSymmetricNumericalSemigroup
50
51
IsSymmetricNumericalSemigroup( s )  attribute
52
IsSymmetric( s )  attribute
53
54
s is a numerical semigroup. The output is true if s is symmetric, false
55
otherwise.
56
57
 Example 
58
gap> IsSymmetric(NumericalSemigroup(10,23));
59
true
60
gap> IsSymmetricNumericalSemigroup(NumericalSemigroup(10,11,23));
61
false
62

63
64
6.1-3 IsPseudoSymmetric
65
66
IsPseudoSymmetric( s )  property
67
IsPseudoSymmetricNumericalSemigroup( s )  property
68
69
s is a numerical semigroup. The output is true if s is pseudo-symmetric,
70
false otherwise.
71
72
 Example 
73
gap> IsPseudoSymmetricNumericalSemigroup(NumericalSemigroup(6,7,8,9,11));
74
true
75
gap> IsPseudoSymmetricNumericalSemigroup(NumericalSemigroup(4,6,9));
76
false
77

78
79
6.1-4 AnIrreducibleNumericalSemigroupWithFrobeniusNumber
80
81
AnIrreducibleNumericalSemigroupWithFrobeniusNumber( f )  function
82
83
f is an integer greater than or equal to -1. The output is an irreducible
84
numerical semigroup with Frobenius number  f. From the way the procedure is
85
implemented, the resulting semigroup has at most four generators (see
86
[RGS04]).
87
88
 Example 
89
gap> s := AnIrreducibleNumericalSemigroupWithFrobeniusNumber(28);
90
<Numerical semigroup with 3 generators>
91
gap> MinimalGenerators(s);
92
[ 3, 17, 31 ]
93
gap> FrobeniusNumber(s);
94
28
95

96
97
6.1-5 IrreducibleNumericalSemigroupsWithFrobeniusNumber
98
99
IrreducibleNumericalSemigroupsWithFrobeniusNumber( f )  function
100
101
f is an integer greater than or equal to -1. The output is the set of all
102
irreducible numerical semigroups with Frobenius number f.
103
104
 Example 
105
gap> Length(IrreducibleNumericalSemigroupsWithFrobeniusNumber(19));
106
20
107

108
109
6.1-6 DecomposeIntoIrreducibles
110
111
DecomposeIntoIrreducibles( s )  function
112
113
s is a numerical semigroup. The output is a set of irreducible numerical
114
semigroups containing it. These elements appear in a minimal decomposition
115
of s as intersection into irreducibles.
116
117
 Example 
118
gap> DecomposeIntoIrreducibles(NumericalSemigroup(5,6,8));
119
[ <Numerical semigroup with 3 generators>,
120
 <Numerical semigroup with 4 generators> ]
121

122
123
124
6.2 Complete intersection numerical semigroups
125
126
The cardinality of a minimal presentation of a numerical semigroup is alwas
127
greater than or equal to its embedding dimension minus one. Complete
128
intersection numerical semigroups are numerical semigroups reching this
129
bound, and they are irreducible. It can be shown that every complete
130
intersection (other that N) is a complete intersection if and only if it is
131
the gluing of two complete intersections. When in this gluing, one of the
132
copies is isomorphic to N, then we obtain a free semigroup in the sense of
133
[BC77]. Two special kinds of free semigroups are telescopic semigroups
134
([KP95]) and those associated to an irreducible planar curve ([Zar86]). We
135
use the algorithms presented in [AGS13] to find the set of all complete
136
intersections (also free, telescopic and associated to irreducible planar
137
curves) numerical semigroups with given Frobenius number.
138
139
6.2-1 AsGluingOfNumericalSemigroups
140
141
AsGluingOfNumericalSemigroups( s )  function
142
143
s is a numerical semigroup. Returns all partitions {A_1,A_2} of the minimal
144
generating set of s such that s is a gluing of ⟨ A_1⟩ and ⟨ A_2⟩ by
145
gcd(A_1)gcd(A_2)
146
147
 Example 
148
gap> s := NumericalSemigroup( 10, 15, 16 );
149
<Numerical semigroup with 3 generators>
150
gap> AsGluingOfNumericalSemigroups(s);
151
[ [ [ 10, 15 ], [ 16 ] ], [ [ 10, 16 ], [ 15 ] ] ]
152
gap> s := NumericalSemigroup( 18, 24, 34, 46, 51, 61, 74, 8 );
153
<Numerical semigroup with 8 generators>
154
gap> AsGluingOfNumericalSemigroups(s);
155
[ ]
156

157
158
6.2-2 IsCompleteIntersection
159
160
IsCompleteIntersection( s )  property
161
IsACompleteIntersectionNumericalSemigroup( s )  property
162
163
s is a numerical semigroup. The output is true if the numerical semigroup is
164
a complete intersection, that is, the cardinality of a (any) minimal
165
presentation equals its embedding dimension minus one.
166
167
 Example 
168
gap> s := NumericalSemigroup( 10, 15, 16 );
169
<Numerical semigroup with 3 generators>
170
gap> IsACompleteIntersectionNumericalSemigroup(s);
171
true
172
gap> s := NumericalSemigroup( 18, 24, 34, 46, 51, 61, 74, 8 );
173
<Numerical semigroup with 8 generators>
174
gap> IsACompleteIntersectionNumericalSemigroup(s);
175
false
176

177
178
6.2-3 CompleteIntersectionNumericalSemigroupsWithFrobeniusNumber
179
180
CompleteIntersectionNumericalSemigroupsWithFrobeniusNumber( f )  function
181
182
f is an integer greater than or equal to -1. The output is the set of all
183
complete intersection numerical semigroups with frobenius number f.
184
185
 Example 
186
gap> Length(CompleteIntersectionNumericalSemigroupsWithFrobeniusNumber(57));
187
34
188

189
190
6.2-4 IsFree
191
192
IsFree( s )  property
193
IsFreeNumericalSemigroup( s )  property
194
195
s is a numerical semigroup. The output is true if the numerical semigroup is
196
free in the sense of [BC77]: it is either N or the gluing of a copy of N
197
with a free numerical semigroup.
198
199
 Example 
200
gap> IsFreeNumericalSemigroup(NumericalSemigroup(10,15,16));
201
true
202
gap> IsFreeNumericalSemigroup(NumericalSemigroup(3,5,7));
203
false
204

205
206
6.2-5 FreeNumericalSemigroupsWithFrobeniusNumber
207
208
FreeNumericalSemigroupsWithFrobeniusNumber( f )  function
209
210
f is an integer greater than or equal to -1. The output is the set of all
211
free numerical semigroups with frobenius number f.
212
213
 Example 
214
gap> Length(FreeNumericalSemigroupsWithFrobeniusNumber(57));
215
33
216

217
218
6.2-6 IsTelescopic
219
220
IsTelescopic( s )  property
221
IsTelescopicNumericalSemigroup( s )  property
222
223
s is a numerical semigroup. The output is true if the numerical semigroup is
224
telescopic in the sense of [KP95]: it is either N or the gluing of ⟨ n_e⟩
225
and s'=⟨ n_1/d,..., n_e-1/d⟩, and s' is again a telescopic numerical
226
semigroup, where n_1 < ⋯ < n_e are the minimal generators of s.
227
228
 Example 
229
gap> IsTelescopicNumericalSemigroup(NumericalSemigroup(4,11,14));
230
false
231
gap> IsFreeNumericalSemigroup(NumericalSemigroup(4,11,14));
232
true
233

234
235
6.2-7 TelescopicNumericalSemigroupsWithFrobeniusNumber
236
237
TelescopicNumericalSemigroupsWithFrobeniusNumber( f )  function
238
239
f is an integer greater than or equal to -1. The output is the set of all
240
telescopic numerical semigroups with frobenius number f.
241
242
 Example 
243
gap> Length(TelescopicNumericalSemigroupsWithFrobeniusNumber(57));
244
20
245

246
247
6.2-8 IsNumericalSemigroupAssociatedIrreduciblePlanarCurveSingularity
248
249
IsNumericalSemigroupAssociatedIrreduciblePlanarCurveSingularity( s )  property
250
251
s is a numerical semigroup. The output is true if the numerical semigroup is
252
associated to an irreducible planar curve singularity ([Zar86]). These
253
semigroups are telescopic.
254
255
 Example 
256
gap> ns := NumericalSemigroup(4,11,14);;
257
gap> IsNumericalSemigroupAssociatedIrreduciblePlanarCurveSingularity(ns);
258
false
259
gap> ns := NumericalSemigroup(4,11,19);;
260
gap> IsNumericalSemigroupAssociatedIrreduciblePlanarCurveSingularity(ns);
261
true
262

263
264
6.2-9 NumericalSemigroupsPlanarSingularityWithFrobeniusNumber
265
266
NumericalSemigroupsPlanarSingularityWithFrobeniusNumber( f )  function
267
268
f is an integer greater than or equal to -1. The output is the set of all
269
numerical semigroups associated to irreducible planar curves singularities
270
with frobenius number f.
271
272
 Example 
273
gap> Length(NumericalSemigroupsPlanarSingularityWithFrobeniusNumber(57));
274
7
275

276
277
6.2-10 IsAperySetGammaRectangular
278
279
IsAperySetGammaRectangular( S )  function
280
281
S is a numerical semigroup.
282
283
Test for the γ-rectangularity of the Apéry Set of a numerical semigroup.
284
This test is the implementation of the algorithm given in [DMS14]. Numerical
285
Semigroups with this property are free and thus complete intersections.
286
287
 Example 
288
gap> s:=NumericalSemigroup(30, 35, 42, 47, 148, 153, 157, 169, 181, 193);;
289
gap> IsAperySetGammaRectangular(s);
290
false
291
gap> s:=NumericalSemigroup(4,6,11);;
292
gap> IsAperySetGammaRectangular(s);
293
true
294
 
295

296
297
6.2-11 IsAperySetBetaRectangular
298
299
IsAperySetBetaRectangular( S )  function
300
301
S is a numerical semigroup.
302
303
Test for the β-rectangularity of the Apéry Set of a numerical semigroup.
304
This test is the implementation of the algorithm given in [DMS14];
305
β-rectangularity implies γ-rectangularity.
306
307
 Example 
308
gap> s:=NumericalSemigroup(30, 35, 42, 47, 148, 153, 157, 169, 181, 193);;
309
gap> IsAperySetBetaRectangular(s);
310
false
311
gap> s:=NumericalSemigroup(4,6,11);;
312
gap> IsAperySetBetaRectangular(s);
313
true
314
 
315

316
317
6.2-12 IsAperySetAlphaRectangular
318
319
IsAperySetAlphaRectangular( S )  function
320
321
S is a numerical semigroup.
322
323
Test for the α-rectangularity of the Apéry Set of a numerical semigroup.
324
This test is the implementation of the algorithm given in [DMS14];
325
α-rectangularity implies β-rectangularity.
326
327
 Example 
328
gap> s:=NumericalSemigroup(30, 35, 42, 47, 148, 153, 157, 169, 181, 193);;
329
gap> IsAperySetAlphaRectangular(s);
330
false
331
gap> s:=NumericalSemigroup(4,6,11);;
332
gap> IsAperySetAlphaRectangular(s);
333
true
334

335
336
337
6.3 Almost-symmetric numerical semigroups
338
339
A numerical semigroup is almost-symmetric ([BR97]) if its genus is the
340
arithmetic mean of its Frobenius number and type. We use a procedure
341
presented in [RGS14] to determine the set of all almost-symmetric numerical
342
semigroups with given Frobenius number. In order to do this, we first
343
calculate the set of all almost-symmetric numerical semigroups that can be
344
constructed from an irreducible numerical semigroup.
345
346
6.3-1 AlmostSymmetricNumericalSemigroupsFromIrreducible
347
348
AlmostSymmetricNumericalSemigroupsFromIrreducible( s )  function
349
350
s is an irreducible numerical semigroup. The output is the set of
351
almost-symetric numerical semigroups that can be constructed from s by
352
removing some of its generators as explained in [RGS14]).
353
354
 Example 
355
gap> ns := NumericalSemigroup(5,8,9,11);;
356
gap> AlmostSymmetricNumericalSemigroupsFromIrreducible(ns);
357
[ <Numerical semigroup with 4 generators>,
358
 <Numerical semigroup with 5 generators>,
359
 <Numerical semigroup with 5 generators> ]
360
gap> List(last,MinimalGeneratingSystemOfNumericalSemigroup);
361
[ [ 5, 8, 9, 11 ], [ 5, 8, 11, 14, 17 ], [ 5, 9, 11, 13, 17 ] ]
362

363
364
6.3-2 IsAlmostSymmetric
365
366
IsAlmostSymmetric( s )  function
367
IsAlmostSymmetricNumericalSemigroup( s )  function
368
369
s is a numerical semigroup. The output is true if the numerical semigroup is
370
almost symmetric.
371
372
 Example 
373
gap> IsAlmostSymmetricNumericalSemigroup(NumericalSemigroup(5,8,11,14,17));
374
true
375

376
377
6.3-3 AlmostSymmetricNumericalSemigroupsWithFrobeniusNumber
378
379
AlmostSymmetricNumericalSemigroupsWithFrobeniusNumber( f )  function
380
381
f is an integer greater than or equal to -1. The output is the set of all
382
almost symmetric numerical semigroups with Frobenius number f.
383
384
 Example 
385
gap> Length(AlmostSymmetricNumericalSemigroupsWithFrobeniusNumber(12));
386
15
387
gap> Length(IrreducibleNumericalSemigroupsWithFrobeniusNumber(12));
388
2
389

390
391
392