Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
Project: cocalc-sagemath-dev-slelievre
Views: 4183461[1X6 [33X[0;0YIrreducible numerical semigroups[133X[101X234[1X6.1 [33X[0;0YIrreducible numerical semigroups[133X[101X56[33X[0;0YAn irreducible numerical semigroup is a semigroup that cannot be expressed7as the intersection of numerical semigroups properly containing it.[133X89[33X[0;0YIt is not difficult to prove that a semigroup is irreducible if and only if10it is maximal (with respect to set inclusion) in the set of all numerical11semigroups having its same Frobenius number (see [RB03]). Hence, according12to [FGR87] (respectively [BDF97]), symmetric (respectively pseudo-symmetric)13numerical semigroups are those irreducible numerical semigroups with odd14(respectively even) Frobenius number.[133X1516[33X[0;0YIn [RGSGGJM03] it is shown that a nontrivial numerical semigroup is17irreducible if and only if it has only one special gap. We use this18characterization.[133X1920[33X[0;0YIn this section we show how to construct the set of all numerical semigroups21with a given Frobenius number. In old versions of the package, we first22constructed an irreducible numerical semigroup with the given Frobenius23number (as explained in [RGS04]), and then we constructed the rest from it.24That is why we separated both functions. The present version uses a faster25procedure presented in [BR13].[133X2627[33X[0;0YEvery numerical semigroup can be expressed as an intersection of irreducible28numerical semigroups. If [22XS[122X can be expressed as [22XS=S_1∩ ⋯∩ S_n[122X, with [22XS_i[122X29irreducible numerical semigroups, and no factor can be removed, then we say30that this decomposition is minimal. Minimal decompositions can be computed31by using Algorithm 26 in [RGSGGJM03].[133X3233[1X6.1-1 IsIrreducibleNumericalSemigroup[101X3435[29X[2XIsIrreducibleNumericalSemigroup[102X( [3Xs[103X ) [32X property36[29X[2XIsIrreducible[102X( [3Xs[103X ) [32X property3738[33X[0;0Y[3Xs[103X is a numerical semigroup. The output is true if [3Xs[103X is irreducible, false39otherwise.[133X4041[4X[32X Example [32X[104X42[4X[25Xgap>[125X [27XIsIrreducibleNumericalSemigroup(NumericalSemigroup(4,6,9));[127X[104X43[4X[28Xtrue[128X[104X44[4X[25Xgap>[125X [27XIsIrreducibleNumericalSemigroup(NumericalSemigroup(4,6,7,9));[127X[104X45[4X[28Xfalse[128X[104X46[4X[32X[104X4748[1X6.1-2 IsSymmetricNumericalSemigroup[101X4950[29X[2XIsSymmetricNumericalSemigroup[102X( [3Xs[103X ) [32X attribute51[29X[2XIsSymmetric[102X( [3Xs[103X ) [32X attribute5253[33X[0;0Y[3Xs[103X is a numerical semigroup. The output is true if [3Xs[103X is symmetric, false54otherwise.[133X5556[4X[32X Example [32X[104X57[4X[25Xgap>[125X [27XIsSymmetric(NumericalSemigroup(10,23));[127X[104X58[4X[28Xtrue[128X[104X59[4X[25Xgap>[125X [27XIsSymmetricNumericalSemigroup(NumericalSemigroup(10,11,23));[127X[104X60[4X[28Xfalse[128X[104X61[4X[32X[104X6263[1X6.1-3 IsPseudoSymmetric[101X6465[29X[2XIsPseudoSymmetric[102X( [3Xs[103X ) [32X property66[29X[2XIsPseudoSymmetricNumericalSemigroup[102X( [3Xs[103X ) [32X property6768[33X[0;0Y[3Xs[103X is a numerical semigroup. The output is true if [3Xs[103X is pseudo-symmetric,69false otherwise.[133X7071[4X[32X Example [32X[104X72[4X[25Xgap>[125X [27XIsPseudoSymmetricNumericalSemigroup(NumericalSemigroup(6,7,8,9,11));[127X[104X73[4X[28Xtrue[128X[104X74[4X[25Xgap>[125X [27XIsPseudoSymmetricNumericalSemigroup(NumericalSemigroup(4,6,9));[127X[104X75[4X[28Xfalse[128X[104X76[4X[32X[104X7778[1X6.1-4 AnIrreducibleNumericalSemigroupWithFrobeniusNumber[101X7980[29X[2XAnIrreducibleNumericalSemigroupWithFrobeniusNumber[102X( [3Xf[103X ) [32X function8182[33X[0;0Y[3Xf[103X is an integer greater than or equal to -1. The output is an irreducible83numerical semigroup with Frobenius number [3X f[103X. From the way the procedure is84implemented, the resulting semigroup has at most four generators (see85[RGS04]).[133X8687[4X[32X Example [32X[104X88[4X[25Xgap>[125X [27Xs := AnIrreducibleNumericalSemigroupWithFrobeniusNumber(28);[127X[104X89[4X[28X<Numerical semigroup with 3 generators>[128X[104X90[4X[25Xgap>[125X [27XMinimalGenerators(s);[127X[104X91[4X[28X[ 3, 17, 31 ][128X[104X92[4X[25Xgap>[125X [27XFrobeniusNumber(s);[127X[104X93[4X[28X28[128X[104X94[4X[32X[104X9596[1X6.1-5 IrreducibleNumericalSemigroupsWithFrobeniusNumber[101X9798[29X[2XIrreducibleNumericalSemigroupsWithFrobeniusNumber[102X( [3Xf[103X ) [32X function99100[33X[0;0Y[3Xf[103X is an integer greater than or equal to -1. The output is the set of all101irreducible numerical semigroups with Frobenius number [3Xf[103X.[133X102103[4X[32X Example [32X[104X104[4X[25Xgap>[125X [27XLength(IrreducibleNumericalSemigroupsWithFrobeniusNumber(19));[127X[104X105[4X[28X20[128X[104X106[4X[32X[104X107108[1X6.1-6 DecomposeIntoIrreducibles[101X109110[29X[2XDecomposeIntoIrreducibles[102X( [3Xs[103X ) [32X function111112[33X[0;0Y[3Xs[103X is a numerical semigroup. The output is a set of irreducible numerical113semigroups containing it. These elements appear in a minimal decomposition114of [3Xs[103X as intersection into irreducibles.[133X115116[4X[32X Example [32X[104X117[4X[25Xgap>[125X [27XDecomposeIntoIrreducibles(NumericalSemigroup(5,6,8));[127X[104X118[4X[28X[ <Numerical semigroup with 3 generators>,[128X[104X119[4X[28X <Numerical semigroup with 4 generators> ][128X[104X120[4X[32X[104X121122123[1X6.2 [33X[0;0YComplete intersection numerical semigroups[133X[101X124125[33X[0;0YThe cardinality of a minimal presentation of a numerical semigroup is alwas126greater than or equal to its embedding dimension minus one. Complete127intersection numerical semigroups are numerical semigroups reching this128bound, and they are irreducible. It can be shown that every complete129intersection (other that [22XN[122X) is a complete intersection if and only if it is130the gluing of two complete intersections. When in this gluing, one of the131copies is isomorphic to [22XN[122X, then we obtain a free semigroup in the sense of132[BC77]. Two special kinds of free semigroups are telescopic semigroups133([KP95]) and those associated to an irreducible planar curve ([Zar86]). We134use the algorithms presented in [AGS13] to find the set of all complete135intersections (also free, telescopic and associated to irreducible planar136curves) numerical semigroups with given Frobenius number.[133X137138[1X6.2-1 AsGluingOfNumericalSemigroups[101X139140[29X[2XAsGluingOfNumericalSemigroups[102X( [3Xs[103X ) [32X function141142[33X[0;0Y[3Xs[103X is a numerical semigroup. Returns all partitions [22X{A_1,A_2}[122X of the minimal143generating set of [3Xs[103X such that [3Xs[103X is a gluing of [22X⟨ A_1⟩[122X and [22X⟨ A_2⟩[122X by144[22Xgcd(A_1)gcd(A_2)[122X[133X145146[4X[32X Example [32X[104X147[4X[25Xgap>[125X [27Xs := NumericalSemigroup( 10, 15, 16 );[127X[104X148[4X[28X<Numerical semigroup with 3 generators>[128X[104X149[4X[25Xgap>[125X [27XAsGluingOfNumericalSemigroups(s);[127X[104X150[4X[28X[ [ [ 10, 15 ], [ 16 ] ], [ [ 10, 16 ], [ 15 ] ] ][128X[104X151[4X[25Xgap>[125X [27Xs := NumericalSemigroup( 18, 24, 34, 46, 51, 61, 74, 8 );[127X[104X152[4X[28X<Numerical semigroup with 8 generators>[128X[104X153[4X[25Xgap>[125X [27XAsGluingOfNumericalSemigroups(s);[127X[104X154[4X[28X[ ][128X[104X155[4X[32X[104X156157[1X6.2-2 IsCompleteIntersection[101X158159[29X[2XIsCompleteIntersection[102X( [3Xs[103X ) [32X property160[29X[2XIsACompleteIntersectionNumericalSemigroup[102X( [3Xs[103X ) [32X property161162[33X[0;0Y[3Xs[103X is a numerical semigroup. The output is true if the numerical semigroup is163a complete intersection, that is, the cardinality of a (any) minimal164presentation equals its embedding dimension minus one.[133X165166[4X[32X Example [32X[104X167[4X[25Xgap>[125X [27Xs := NumericalSemigroup( 10, 15, 16 );[127X[104X168[4X[28X<Numerical semigroup with 3 generators>[128X[104X169[4X[25Xgap>[125X [27XIsACompleteIntersectionNumericalSemigroup(s);[127X[104X170[4X[28Xtrue[128X[104X171[4X[25Xgap>[125X [27Xs := NumericalSemigroup( 18, 24, 34, 46, 51, 61, 74, 8 );[127X[104X172[4X[28X<Numerical semigroup with 8 generators>[128X[104X173[4X[25Xgap>[125X [27XIsACompleteIntersectionNumericalSemigroup(s);[127X[104X174[4X[28Xfalse[128X[104X175[4X[32X[104X176177[1X6.2-3 CompleteIntersectionNumericalSemigroupsWithFrobeniusNumber[101X178179[29X[2XCompleteIntersectionNumericalSemigroupsWithFrobeniusNumber[102X( [3Xf[103X ) [32X function180181[33X[0;0Y[3Xf[103X is an integer greater than or equal to -1. The output is the set of all182complete intersection numerical semigroups with frobenius number [3Xf[103X.[133X183184[4X[32X Example [32X[104X185[4X[25Xgap>[125X [27XLength(CompleteIntersectionNumericalSemigroupsWithFrobeniusNumber(57));[127X[104X186[4X[28X34[128X[104X187[4X[32X[104X188189[1X6.2-4 IsFree[101X190191[29X[2XIsFree[102X( [3Xs[103X ) [32X property192[29X[2XIsFreeNumericalSemigroup[102X( [3Xs[103X ) [32X property193194[33X[0;0Y[3Xs[103X is a numerical semigroup. The output is true if the numerical semigroup is195free in the sense of [BC77]: it is either [22XN[122X or the gluing of a copy of [22XN[122X196with a free numerical semigroup.[133X197198[4X[32X Example [32X[104X199[4X[25Xgap>[125X [27XIsFreeNumericalSemigroup(NumericalSemigroup(10,15,16));[127X[104X200[4X[28Xtrue[128X[104X201[4X[25Xgap>[125X [27XIsFreeNumericalSemigroup(NumericalSemigroup(3,5,7));[127X[104X202[4X[28Xfalse[128X[104X203[4X[32X[104X204205[1X6.2-5 FreeNumericalSemigroupsWithFrobeniusNumber[101X206207[29X[2XFreeNumericalSemigroupsWithFrobeniusNumber[102X( [3Xf[103X ) [32X function208209[33X[0;0Y[3Xf[103X is an integer greater than or equal to -1. The output is the set of all210free numerical semigroups with frobenius number [3Xf[103X.[133X211212[4X[32X Example [32X[104X213[4X[25Xgap>[125X [27XLength(FreeNumericalSemigroupsWithFrobeniusNumber(57));[127X[104X214[4X[28X33[128X[104X215[4X[32X[104X216217[1X6.2-6 IsTelescopic[101X218219[29X[2XIsTelescopic[102X( [3Xs[103X ) [32X property220[29X[2XIsTelescopicNumericalSemigroup[102X( [3Xs[103X ) [32X property221222[33X[0;0Y[3Xs[103X is a numerical semigroup. The output is true if the numerical semigroup is223telescopic in the sense of [KP95]: it is either [22XN[122X or the gluing of [22X⟨ n_e⟩[122X224and [22Xs'=⟨ n_1/d,..., n_e-1/d⟩[122X, and [22Xs'[122X is again a telescopic numerical225semigroup, where [22Xn_1 < ⋯ < n_e[122X are the minimal generators of [3Xs[103X.[133X226227[4X[32X Example [32X[104X228[4X[25Xgap>[125X [27XIsTelescopicNumericalSemigroup(NumericalSemigroup(4,11,14));[127X[104X229[4X[28Xfalse[128X[104X230[4X[25Xgap>[125X [27XIsFreeNumericalSemigroup(NumericalSemigroup(4,11,14));[127X[104X231[4X[28Xtrue[128X[104X232[4X[32X[104X233234[1X6.2-7 TelescopicNumericalSemigroupsWithFrobeniusNumber[101X235236[29X[2XTelescopicNumericalSemigroupsWithFrobeniusNumber[102X( [3Xf[103X ) [32X function237238[33X[0;0Y[3Xf[103X is an integer greater than or equal to -1. The output is the set of all239telescopic numerical semigroups with frobenius number [3Xf[103X.[133X240241[4X[32X Example [32X[104X242[4X[25Xgap>[125X [27XLength(TelescopicNumericalSemigroupsWithFrobeniusNumber(57));[127X[104X243[4X[28X20[128X[104X244[4X[32X[104X245246[1X6.2-8 IsNumericalSemigroupAssociatedIrreduciblePlanarCurveSingularity[101X247248[29X[2XIsNumericalSemigroupAssociatedIrreduciblePlanarCurveSingularity[102X( [3Xs[103X ) [32X property249250[33X[0;0Y[3Xs[103X is a numerical semigroup. The output is true if the numerical semigroup is251associated to an irreducible planar curve singularity ([Zar86]). These252semigroups are telescopic.[133X253254[4X[32X Example [32X[104X255[4X[25Xgap>[125X [27Xns := NumericalSemigroup(4,11,14);;[127X[104X256[4X[25Xgap>[125X [27XIsNumericalSemigroupAssociatedIrreduciblePlanarCurveSingularity(ns);[127X[104X257[4X[28Xfalse[128X[104X258[4X[25Xgap>[125X [27Xns := NumericalSemigroup(4,11,19);;[127X[104X259[4X[25Xgap>[125X [27XIsNumericalSemigroupAssociatedIrreduciblePlanarCurveSingularity(ns);[127X[104X260[4X[28Xtrue[128X[104X261[4X[32X[104X262263[1X6.2-9 NumericalSemigroupsPlanarSingularityWithFrobeniusNumber[101X264265[29X[2XNumericalSemigroupsPlanarSingularityWithFrobeniusNumber[102X( [3Xf[103X ) [32X function266267[33X[0;0Y[3Xf[103X is an integer greater than or equal to -1. The output is the set of all268numerical semigroups associated to irreducible planar curves singularities269with frobenius number [3Xf[103X.[133X270271[4X[32X Example [32X[104X272[4X[25Xgap>[125X [27XLength(NumericalSemigroupsPlanarSingularityWithFrobeniusNumber(57));[127X[104X273[4X[28X7[128X[104X274[4X[32X[104X275276[1X6.2-10 IsAperySetGammaRectangular[101X277278[29X[2XIsAperySetGammaRectangular[102X( [3XS[103X ) [32X function279280[33X[0;0Y[3XS[103X is a numerical semigroup.[133X281282[33X[0;0YTest for the [22Xγ[122X-rectangularity of the Apéry Set of a numerical semigroup.283This test is the implementation of the algorithm given in [DMS14]. Numerical284Semigroups with this property are free and thus complete intersections.[133X285286[4X[32X Example [32X[104X287[4X[25Xgap>[125X [27Xs:=NumericalSemigroup(30, 35, 42, 47, 148, 153, 157, 169, 181, 193);;[127X[104X288[4X[25Xgap>[125X [27XIsAperySetGammaRectangular(s);[127X[104X289[4X[28Xfalse[128X[104X290[4X[25Xgap>[125X [27Xs:=NumericalSemigroup(4,6,11);;[127X[104X291[4X[25Xgap>[125X [27XIsAperySetGammaRectangular(s);[127X[104X292[4X[28Xtrue[128X[104X293[4X[28X [128X[104X294[4X[32X[104X295296[1X6.2-11 IsAperySetBetaRectangular[101X297298[29X[2XIsAperySetBetaRectangular[102X( [3XS[103X ) [32X function299300[33X[0;0Y[3XS[103X is a numerical semigroup.[133X301302[33X[0;0YTest for the [22Xβ[122X-rectangularity of the Apéry Set of a numerical semigroup.303This test is the implementation of the algorithm given in [DMS14];304[22Xβ[122X-rectangularity implies [22Xγ[122X-rectangularity.[133X305306[4X[32X Example [32X[104X307[4X[25Xgap>[125X [27Xs:=NumericalSemigroup(30, 35, 42, 47, 148, 153, 157, 169, 181, 193);;[127X[104X308[4X[25Xgap>[125X [27XIsAperySetBetaRectangular(s);[127X[104X309[4X[28Xfalse[128X[104X310[4X[25Xgap>[125X [27Xs:=NumericalSemigroup(4,6,11);;[127X[104X311[4X[25Xgap>[125X [27XIsAperySetBetaRectangular(s);[127X[104X312[4X[28Xtrue[128X[104X313[4X[28X [128X[104X314[4X[32X[104X315316[1X6.2-12 IsAperySetAlphaRectangular[101X317318[29X[2XIsAperySetAlphaRectangular[102X( [3XS[103X ) [32X function319320[33X[0;0Y[3XS[103X is a numerical semigroup.[133X321322[33X[0;0YTest for the [22Xα[122X-rectangularity of the Apéry Set of a numerical semigroup.323This test is the implementation of the algorithm given in [DMS14];324[22Xα[122X-rectangularity implies [22Xβ[122X-rectangularity.[133X325326[4X[32X Example [32X[104X327[4X[25Xgap>[125X [27Xs:=NumericalSemigroup(30, 35, 42, 47, 148, 153, 157, 169, 181, 193);;[127X[104X328[4X[25Xgap>[125X [27XIsAperySetAlphaRectangular(s);[127X[104X329[4X[28Xfalse[128X[104X330[4X[25Xgap>[125X [27Xs:=NumericalSemigroup(4,6,11);;[127X[104X331[4X[25Xgap>[125X [27XIsAperySetAlphaRectangular(s);[127X[104X332[4X[28Xtrue[128X[104X333[4X[32X[104X334335336[1X6.3 [33X[0;0YAlmost-symmetric numerical semigroups[133X[101X337338[33X[0;0YA numerical semigroup is almost-symmetric ([BR97]) if its genus is the339arithmetic mean of its Frobenius number and type. We use a procedure340presented in [RGS14] to determine the set of all almost-symmetric numerical341semigroups with given Frobenius number. In order to do this, we first342calculate the set of all almost-symmetric numerical semigroups that can be343constructed from an irreducible numerical semigroup.[133X344345[1X6.3-1 AlmostSymmetricNumericalSemigroupsFromIrreducible[101X346347[29X[2XAlmostSymmetricNumericalSemigroupsFromIrreducible[102X( [3Xs[103X ) [32X function348349[33X[0;0Y[3Xs[103X is an irreducible numerical semigroup. The output is the set of350almost-symetric numerical semigroups that can be constructed from [3Xs[103X by351removing some of its generators as explained in [RGS14]).[133X352353[4X[32X Example [32X[104X354[4X[25Xgap>[125X [27Xns := NumericalSemigroup(5,8,9,11);;[127X[104X355[4X[25Xgap>[125X [27XAlmostSymmetricNumericalSemigroupsFromIrreducible(ns);[127X[104X356[4X[28X[ <Numerical semigroup with 4 generators>,[128X[104X357[4X[28X <Numerical semigroup with 5 generators>,[128X[104X358[4X[28X <Numerical semigroup with 5 generators> ][128X[104X359[4X[25Xgap>[125X [27XList(last,MinimalGeneratingSystemOfNumericalSemigroup);[127X[104X360[4X[28X[ [ 5, 8, 9, 11 ], [ 5, 8, 11, 14, 17 ], [ 5, 9, 11, 13, 17 ] ][128X[104X361[4X[32X[104X362363[1X6.3-2 IsAlmostSymmetric[101X364365[29X[2XIsAlmostSymmetric[102X( [3Xs[103X ) [32X function366[29X[2XIsAlmostSymmetricNumericalSemigroup[102X( [3Xs[103X ) [32X function367368[33X[0;0Y[3Xs[103X is a numerical semigroup. The output is true if the numerical semigroup is369almost symmetric.[133X370371[4X[32X Example [32X[104X372[4X[25Xgap>[125X [27XIsAlmostSymmetricNumericalSemigroup(NumericalSemigroup(5,8,11,14,17));[127X[104X373[4X[28Xtrue[128X[104X374[4X[32X[104X375376[1X6.3-3 AlmostSymmetricNumericalSemigroupsWithFrobeniusNumber[101X377378[29X[2XAlmostSymmetricNumericalSemigroupsWithFrobeniusNumber[102X( [3Xf[103X ) [32X function379380[33X[0;0Y[3Xf[103X is an integer greater than or equal to -1. The output is the set of all381almost symmetric numerical semigroups with Frobenius number [3Xf[103X.[133X382383[4X[32X Example [32X[104X384[4X[25Xgap>[125X [27XLength(AlmostSymmetricNumericalSemigroupsWithFrobeniusNumber(12));[127X[104X385[4X[28X15[128X[104X386[4X[25Xgap>[125X [27XLength(IrreducibleNumericalSemigroupsWithFrobeniusNumber(12));[127X[104X387[4X[28X2[128X[104X388[4X[32X[104X389390391392