CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutSign UpSign In

Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.

| Download

GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it

Views: 418346
#############################################################################
##
#W  affine-extra-4ti2gap.gi
#W                          Manuel Delgado <[email protected]>
#W                          Pedro Garcia-Sanchez <[email protected]>
##
#Y  Copyright 2015-- Centro de Matemática da Universidade do Porto, Portugal and Universidad de Granada, Spain
#############################################################################
InstallOtherMethod(PrimitiveElementsOfAffineSemigroup,
        "Computes the set of primitive elements of an affine semigroup",
        [IsAffineSemigroup],4,
        function(a)
    local  matrix, facs, mat, trunc, ls;

    ls:=GeneratorsOfAffineSemigroup(a);

    Info(InfoNumSgps,2,"Using 4ti2gap for Graver.");

    mat:=TransposedMat(ls);
    matrix := GraverBasis4ti2(["mat",mat]);

    trunc:=function(ls)
        return List(ls, y->Maximum(y,0));
    end;

    matrix:=Set(matrix,trunc);
    return Union(Set(matrix, x->x*ls),ls);
end);


InstallOtherMethod(HilbertBasisOfSystemOfHomogeneousEquations,
        "Computes a Hilbert basis of a systemd of linear Diophantine equations, some eventually in congruences.",
        [IsMatrix,IsHomogeneousList],6,
        function(ls,md)
    local  homogeneous, withCongruences;

    homogeneous:= function(l)
        local  problem, matrix,mat,sign;

        Info(InfoNumSgps,2,"Using 4ti2gap for Hilbert.");

        if not(IsRectangularTable(l)) then
            Error("The argument must be a matrix.");
        fi;
        if not(IsInt(l[1][1])) then
            Error("The matrix must be of integers.");
        fi;

	mat:=l;
        sign:=[List(l[1],_->1)];
        problem:=["mat",mat, "sign", sign];

        matrix := HilbertBasis4ti2(problem).zhom;
        return matrix;

    end;

  withCongruences:=function(ls,md)
      local l,n,m,diag,dim,d, hil, zero, leq;

      leq:= function(v1,v2)
          local v;
          v:=v2-v1;
          return (First(v,n->n<0)=fail);
      end;

      if not(IsRectangularTable(ls)) then
          Error("The first argument must be a matrix.");
      fi;

      if not(IsListOfIntegersNS(md)) or ForAny(md, x->not(IsPosInt(x))) then
          Error("The second argument must be a list of positive integers.");
      fi;

      n:=Length(ls);
      dim:=Length(ls[1]);
      m:=Length(md);
      if m>n then
          Error("There are more modulus than equations.");
      fi;

      diag:=Concatenation(md,List([1..n-m],_->0));
      d:=DiagonalMat(diag);
      l:=TransposedMat(Concatenation(TransposedMat(ls),d,-d));
      zero:=List([1..dim],_->0);

      hil:=Difference(List(homogeneous(l), x->x{[1..dim]}),[zero]);
      return hil;

      return Filtered(hil, y->Filtered(hil,x->leq(x,y))=[y]);
  end;
  ## end of local functions ...

  #ls := arg[1][1];
  #md := arg[1][2];
  if md = [] then
      return homogeneous(ls);
  else
      return withCongruences(ls,md);

  fi;

end);

InstallOtherMethod(HilbertBasisOfSystemOfHomogeneousInequalities,
        "Computes a Hilbert basis of l*x>=0, x>=0",
        [IsMatrix],6,
        function(l)
    local  problem, matrix,mat,sign,rel;

    Info(InfoNumSgps,2,"Using 4ti2gap for Hilbert.");

    if not(IsRectangularTable(l)) then
        Error("The argument must be a matrix.");
    fi;
    if not(IsInt(l[1][1])) then
        Error("The matrix must be of integers.");
    fi;

    mat:=l;
    sign:=[List(l[1],_->1)];
    rel:=[List(l[1],_->">")];
    problem:=["mat",mat,"rel",rel,"sign",sign];
    matrix:=HilbertBasis4ti2(problem);
    return matrix;

end);


InstallOtherMethod(FactorizationsVectorWRTList,
        "Computes the factorizations of v in terms of the elments in ls",
        [IsHomogeneousList,IsMatrix],6,
        function(v,l)
    local  matrix,mat,rhs,sign,problem, n;

    Info(InfoNumSgps,2,"Using 4ti2gap for factorizations.");

    if not(IsListOfIntegersNS(v)) then
        Error("The first argument must be a list of integers.");
    fi;

    if not(IsInt(l[1][1])) then
        Error("The matrix must be of integers.");
    fi;

    mat:=TransposedMat(Concatenation(l,[-v]));
    if not(IsRectangularTable(mat)) then
        Error("The list in the second argument must have the same length as all the lists in the first argument.");
    fi;

    sign:=[List(l,_->1)];
    rhs:=[v];
    problem:=["mat",TransposedMat(l),"sign",sign,"rhs",rhs];
    matrix := ZSolve4ti2(problem);
    return matrix.zinhom;

end);


InstallOtherMethod(GeneratorsOfKernelCongruence,
        "Computes a set of generators of the kernel congruence of the monoid morphism associated to a matrix",
        [IsRectangularTable],7,
        function(m)
    local positivenegative, gr;

    positivenegative:=function(p)
        local d1, d2;
        d1:=List(p, i->Maximum(i,0));
        d2:=List(p, i->-Minimum(0,i));
        return [d1,d2];
    end;

    if not(ForAll(m, l->ForAll(l, x->(x=0) or IsPosInt(x)))) then
        Error("The argument must be a matrix of nonnegative integer.");
    fi;

    gr:=GroebnerBasis4ti2(TransposedMat(m));
    Info(InfoNumSgps,2,"4ti output:",gr);

    return List(gr, x->positivenegative(x));
end);

############################################################
# computes a canonical basis of the kernel congruence
# of the monoid morphism associated to the matrix m with
# nonnegative integer coefficients wrt the term ordering
# the kernel is the pairs (x,y) such that xm=ym
############################################################
InstallMethod(CanonicalBasisOfKernelCongruence,
"Computes a canonical basis for the congruence of of the monoid morphism associated to the matrix",
	[IsRectangularTable, IsMonomialOrdering],7,
  function(m,ord)
    local positivenegative, gr, nord, to;

  	positivenegative:=function(p)
  		local d1, d2;
  		d1:=List(p, i->Maximum(i,0));
  		d2:=List(p, i->-Minimum(0,i));
  		return [d1,d2];
  	end;

  	if not(ForAll(m, l->ForAll(l, x->(x=0) or IsPosInt(x)))) then
  		Error("The argument must be a matrix of nonnegative integer.");
  	fi;


  	# trick taken from the package Singular
  	nord := Name( ord );
  	nord := nord{[ 1 .. Position( nord, '(' ) - 1 ]};
  	if nord = "MonomialLexOrdering"  then
  			to := "lex";
  	elif nord = "MonomialGrevlexOrdering"  then
  			to := "grevlex";
  	elif nord = "MonomialGrlexOrdering"  then
  			to := "grlex";
  	else
  			Error( "the ordering ", ord, " is not yet supported\n" );
  	fi;

  	gr:=GroebnerBasis4ti2(TransposedMat(m),to);
  	Info(InfoNumSgps,2,"4ti output:",gr);

  	return Set(gr, x->positivenegative(x));
  end);

############################################################
# computes the Graver basis of matrix with integer entries
############################################################
InstallMethod(GraverBasis,
        "Computes the Graver basis of the matrix",
        [IsRectangularTable],8,
  function(a)
    #4ti2gap implementation
    local gr;


    if not(IsRectangularTable(a)) then
      Error("The argument must be a matrix.");
    fi;

    if not(IsInt(a[1][1])) then
      Error("The entries of the matrix must be integers.");
    fi;

    Info(InfoNumSgps,2,"Using 4ti2gap for Graver.");


    gr := GraverBasis4ti2(["mat",a]);
    return Union(gr,-gr);
  end);



InstallOtherMethod(MinimalPresentationOfAffineSemigroup,
        "Computes a minimimal presentation of the affine semigroup",
        [IsAffineSemigroup],6,
        function(a)
    local gens, positive, gr, candidates, pres, rclass,exps, c;

    positive:=function(x)
        local p,i;

        p:=[];
        for i in [1..Length(x)] do
            p[i]:=Maximum(x[i],0);
        od;

        return p;
    end;
    if not(IsAffineSemigroup(a)) then
        Error("The argument must be an affine semigroup.");
    fi;

    gens:=GeneratorsOfAffineSemigroup(a);

    gr:=GroebnerBasis4ti2(TransposedMat(gens));
    Info(InfoNumSgps,2,"4ti output:",gr);

    candidates:=Set(gr,q->positive(q));
    candidates:=Set(candidates,c->c*gens);
    Info(InfoNumSgps,2, "Candidates to Betti elements",candidates);
    pres:=[];
    for c in candidates do
        exps:=FactorizationsVectorWRTList(c,gens);
        rclass:=RClassesOfSetOfFactorizations(exps);
        if Length(rclass)>1 then
            pres:=Concatenation(pres,List([2..Length(rclass)],
                          i->[rclass[1][1],rclass[i][1]]));
        fi;
    od;
    return pres;
end);



#####################################################################
# Computes the omega-primality of v in the affine semigroup a
#####################################################################
InstallOtherMethod(OmegaPrimalityOfElementInAffineSemigroup,
        "Computes the omega-primality of v in the affine semigroup a",
        [IsHomogeneousList,IsAffineSemigroup],6,
        function(v,a)
    local  ls, n, mat,extfact,par,tot,le;

    le:=function(a,b)  #ordinary partial order
    	return ForAll(b-a,x-> x>=0);
    end;

    if not(IsAffineSemigroup(a)) then
        Error("The second argument must be an affine semigroup");
    fi;

    if not(IsListOfIntegersNS(v)) then
        Error("The first argument must be a list of integers.");
    fi;

    if not(ForAll(v, x-> x>=0)) then
        Error("The first argument must be a list of on nonnegative integers.");
    fi;

    ls:=GeneratorsOfAffineSemigroup(a);
    n:=Length(ls);
    mat:=TransposedMat(Concatenation(ls,-ls,[-v]));

    if not(IsRectangularTable(mat)) then
        Error("The first argument has not the dimension of the second.");
    fi;

    extfact:=FactorizationsVectorWRTList(v,Concatenation(ls,-ls));

    par:=Set(extfact, f->f{[1..n]});
    tot:=Filtered(par, f-> Filtered(par, g-> le(g,f))=[f]);
    Info(InfoNumSgps,2,"Minimals of v+ls =",tot);
    if tot=[] then
        return 0;
    fi;
    return Maximum(Set(tot, Sum));
end);

#####################################################################
# Computes the omega-primality of v in the full affine semigroup a
#####################################################################
InstallOtherMethod(OmegaPrimalityOfElementInAffineSemigroup,
        "Computes the omega-primality of v in the full affine semigroup a",
        [IsHomogeneousList,IsAffineSemigroup and HasEquations],6,
        function(v,a)
    local  ls, n, mat,extfact,par,tot,le;

    le:=function(a,b)  #ordinary partial order
    	return ForAll(b-a,x-> x>=0);
    end;

    if not(IsAffineSemigroup(a)) then
        Error("The second argument must be an affine semigroup");
    fi;

    if not(IsListOfIntegersNS(v)) then
        Error("The first argument must be a list of integers.");
    fi;

    if not(ForAll(v, x-> x>=0)) then
        Error("The first argument must be a list of on nonnegative integers.");
    fi;

    ls:=GeneratorsOfAffineSemigroup(a);
    n:=Length(ls);
    mat:=TransposedMat(Concatenation(ls,-ls,[-v]));

    if not(IsRectangularTable(mat)) then
        Error("The first argument has not the dimension of the second.");
    fi;

    Info(InfoNumSgps,2,"Using 4ti2gap with full affine semigroup");

    extfact:=ZSolve4ti2(["mat",TransposedMat(ls),"rel",List(v,_->1),
                     "sign",List([1..n],_->1),"rhs",v ]);

    tot:=extfact.zinhom;
    Info(InfoNumSgps,2,"Minimals of v+ls =",tot);
    if tot=[] then
        return 0;
    fi;
    return Maximum(Set(tot, Sum));
end);

#ZSolve4ti2(["mat",TransposedMat([[2,0],[0,2],[1,2],[2,1]]),"rel",[1,1],"sign",[1,1,1,1],"rhs",[[15,15]]]);

########
# Tame degree for full affine semigroups
########
InstallMethod(TameDegreeOfAffineSemigroup,
        "Computes the tame degree of the full affine semigroup a",
        [IsAffineSemigroup and HasEquations],2,
        function(a)
    local ls, min, tame, gen,m,n, facts, t, minfacts;

    Info(InfoNumSgps,2,"Using 4ti2gap with full affine semigroup");

    ls:=GeneratorsOfAffineSemigroup(a);
    tame:=0;
    n:=Length(ls);

    for gen in ls do
        minfacts:=ZSolve4ti2(["mat",TransposedMat(ls),"rel",List(gen,_->1),
                     "sign",List([1..n],_->1),"rhs",gen ]).zinhom;
        min:=List(minfacts, x->x*ls);
        Info(InfoNumSgps,2,"Minimal elements of ",gen,"+a=",min);
        for m in min do
            facts:=FactorizationsVectorWRTList(m,ls);
            t:=TameDegreeOfSetOfFactorizations(facts);
            if t> tame then
                tame:=t;
                Info(InfoNumSgps,2,"Tame degree updated to ",tame);
            fi;
        od;
    od;
    return tame;

end);