Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
Project: cocalc-sagemath-dev-slelievre
Views: 418346############################################################################# ## #W basics2.gd Manuel Delgado <[email protected]> #W Pedro A. Garcia-Sanchez <[email protected]> #W Jose Morais <[email protected]> ## ## #Y Copyright 2005 by Manuel Delgado, #Y Pedro Garcia-Sanchez and Jose Joao Morais #Y We adopt the copyright regulations of GAP as detailed in the #Y copyright notice in the GAP manual. ## ############################################################################# ############################################################################# ## #O IsSubsemigroupOfNumericalSemigroup(S,T) #O IsSubset (is a synonym) ## ## Test whether the numerical semigroup T is contained in the ## numerical semigroup S ## ############################################################################# DeclareOperation( "IsSubsemigroupOfNumericalSemigroup",[IsNumericalSemigroup,IsNumericalSemigroup]); ######## #DeclareOperation( "IsSubset",[IsNumericalSemigroup,IsNumericalSemigroup]); ############################################################################# ## #F DifferenceOfNumericalSemigroups(S,T) ## ## returns the set difference S\T ############################################################################# DeclareGlobalFunction("DifferenceOfNumericalSemigroups"); ############################################################################# ## #F IntersectionOfNumericalSemigroups(S,T) ## ## Returns the intersection of the numerical ## semigroups S and T. ## ############################################################################# DeclareGlobalFunction( "IntersectionOfNumericalSemigroups" ); ############################################################################# ## #F RepresentsGapsOfNumericalSemigroup(L) ## ## Tests if the given list L represents the gaps of ## some numerical semigroup. ## ############################################################################# DeclareGlobalFunction("RepresentsGapsOfNumericalSemigroup"); ############################################################################# ## #F NumericalSemigroupsWithFrobeniusNumber(g) ## ## Computes the set of numerical semigroups with Frobenius number g. ## The algorithm is based on ## "Fundamental gaps in numerical semigroup". ## ############################################################################# DeclareGlobalFunction("NumericalSemigroupsWithFrobeniusNumber"); ############################################################################## ## #F NumericalSemigroupsWithGenus ##computes the set of numerical semigroups with genus g, # that is, numerical semigroups with exactly g gaps # # # numerical semigroups are encoded in lists containing the apery set with # respect to the multiplicity removing the zero element. The multiplicity # is thus the lenght of the list plus one. In this way deciding membership # to a numerical semigroup is straightforward (belongs). The computation of # the Frobenius number is performed using Selmer's idea (frob). Removing a new # generator is easy (removegen), as well as computing those minimal generators # greater than the Frobenius number (minimalgeneratorsf). # Given a numerical semigroup of genus g, removing minimal generators, one # obtains numerical semigroups of genus g+1. In order to avoid repetitions, # we only remove minimal generators greater than the frobenius number of # the numerical semigroup (this is accomplished with the local function sons). # References: # -J. C. Rosales, P. A. García-Sánchez, J. I. García-García and # J. A. Jimenez-Madrid, The oversemigroups of a numerical semigroup. # Semigroup Forum 67 (2003), 145--158. # -M. Bras-Amorós, Fibonacci-like behavior of the number of numerical # semigroups of a given genus. Semigroup Forum 76 (2008), 379--384. ## ############################################################################# DeclareGlobalFunction("NumericalSemigroupsWithGenus");