Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
Project: cocalc-sagemath-dev-slelievre
Views: 418346## <#GAPDoc Label="Macaulay2"> ## <Subsection Label="Macaulay2"> ## <Heading>&Macaulay2;</Heading> ## <Example><![CDATA[ ## gap> ZZ := HomalgRingOfIntegersInMacaulay2( ); ## Z ## gap> Display( ZZ ); ## <An external ring residing in the CAS Macaulay2> ## gap> F2 := HomalgRingOfIntegersInMacaulay2( 2, ZZ ); ## GF(2) ## gap> Display( F2 ); ## <An external ring residing in the CAS Macaulay2> ## ]]></Example> ## <C>F2 := HomalgRingOfIntegersInMacaulay2( 2 )</C> would launch another Macaulay2. ## <Example><![CDATA[ ## gap> Z_4 := HomalgRingOfIntegersInMacaulay2( ZZ ) / 4; ## Z/( 4 ) ## gap> Display( Z_4 ); ## <A residue class ring> ## gap> Q := HomalgFieldOfRationalsInMacaulay2( ZZ ); ## Q ## gap> Display( Q ); ## <An external ring residing in the CAS Macaulay2> ## gap> F2xyz := F2 * "x,y,z"; ## GF(2)[x,y,z] ## gap> Display( F2xyz ); ## <An external ring residing in the CAS Macaulay2> ## gap> Qxyz := Q * "x,y,z"; ## Q[x,y,z] ## gap> Display( Qxyz ); ## <An external ring residing in the CAS Macaulay2> ## gap> Dxyz := RingOfDerivations( Qxyz, "Dx,Dy,Dz" ); ## Q[x,y,z]<Dx,Dy,Dz> ## gap> Display( Dxyz ); ## <An external ring residing in the CAS Macaulay2> ## gap> Exyz := ExteriorRing( Qxyz, "e,f,g" ); ## Q{e,f,g} ## gap> Display( Exyz ); ## <An external ring residing in the CAS Macaulay2> ## ]]></Example> ## </Subsection> ## <#/GAPDoc> LoadPackage( "RingsForHomalg" ); Print( "~~~~~~~~~~~\n\n" ); Print( "Macaulay2\n\n" ); ZZ := HomalgRingOfIntegersInMacaulay2( ); Display( ZZ ); F2 := HomalgRingOfIntegersInMacaulay2( 2, ZZ ); Display( F2 ); Z_4 := HomalgRingOfIntegersInMacaulay2( ZZ ) / 4; Display( Z_4 ); Q := HomalgFieldOfRationalsInMacaulay2( ZZ ); Display( Q ); F2xyz := F2 * "x,y,z"; Display( F2xyz ); Qxyz := Q * "x,y,z"; Display( Qxyz ); Dxyz := RingOfDerivations( Qxyz, "Dx,Dy,Dz" ); Display( Dxyz ); Exyz := ExteriorRing( Qxyz, "e,f,g" ); Display( Exyz );