Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
Project: cocalc-sagemath-dev-slelievre
Views: 418346## <#GAPDoc Label="Singular"> ## <Subsection Label="Singular"> ## <Heading>&Singular;</Heading> ## <Example><![CDATA[ ## gap> F2 := HomalgRingOfIntegersInSingular( 2 ); ## GF(2) ## gap> Display( F2 ); ## <An external ring residing in the CAS Singular> ## gap> F2s := HomalgRingOfIntegersInSingular( 2, "s" ,F2 ); ## GF(2)(s) ## gap> Display( F2s ); ## <An external ring residing in the CAS Singular> ## gap> ZZ := HomalgRingOfIntegersInSingular( F2 ); ## Z ## gap> Display( ZZ ); ## <An external ring residing in the CAS Singular> ## gap> Q := HomalgFieldOfRationalsInSingular( F2 ); ## Q ## gap> Display( Q ); ## <An external ring residing in the CAS Singular> ## gap> Qs := HomalgFieldOfRationalsInSingular( "s", F2 ); ## Q(s) ## gap> Display( Qs ); ## <An external ring residing in the CAS Singular> ## gap> Qi := HomalgFieldOfRationalsInSingular( "i", "i^2+1", Q ); ## Q[i]/(i^2+1) ## gap> Display( Qi ); ## <An external ring residing in the CAS Singular> ## ]]></Example> ## <C>Q := HomalgFieldOfRationalsInSingular( )</C> would launch another Singular. ## <Example><![CDATA[ ## gap> F2xyz := F2 * "x,y,z"; ## GF(2)[x,y,z] ## gap> Display( F2xyz ); ## <An external ring residing in the CAS Singular> ## gap> F2sxyz := F2s * "x,y,z"; ## GF(2)(s)[x,y,z] ## gap> Display( F2sxyz ); ## <An external ring residing in the CAS Singular> ## gap> F2xyzw := F2xyz * "w"; ## GF(2)[x,y,z][w] ## gap> Display( F2xyzw ); ## <An external ring residing in the CAS Singular> ## gap> F2sxyzw := F2sxyz * "w"; ## GF(2)(s)[x,y,z][w] ## gap> Display( F2sxyzw ); ## <An external ring residing in the CAS Singular> ## gap> ZZxyz := ZZ * "x,y,z"; ## Z[x,y,z] ## gap> Display( ZZxyz ); ## <An external ring residing in the CAS Singular> ## gap> ZZxyzw := ZZxyz * "w"; ## Z[x,y,z][w] ## gap> Display( ZZxyzw ); ## <An external ring residing in the CAS Singular> ## gap> Qxyz := Q * "x,y,z"; ## Q[x,y,z] ## gap> Display( Qxyz ); ## <An external ring residing in the CAS Singular> ## gap> Qsxyz := Qs * "x,y,z"; ## Q(s)[x,y,z] ## gap> Display( Qsxyz ); ## <An external ring residing in the CAS Singular> ## gap> Qixyz := Qi * "x,y,z"; ## (Q[i]/(i^2+1))[x,y,z] ## gap> Display( Qixyz ); ## <An external ring residing in the CAS Singular> ## gap> Qxyzw := Qxyz * "w"; ## Q[x,y,z][w] ## gap> Display( Qxyzw ); ## <An external ring residing in the CAS Singular> ## gap> Qsxyzw := Qsxyz * "w"; ## Q(s)[x,y,z][w] ## gap> Display( Qsxyzw ); ## <An external ring residing in the CAS Singular> ## gap> Dxyz := RingOfDerivations( Qxyz, "Dx,Dy,Dz" ); ## Q[x,y,z]<Dx,Dy,Dz> ## gap> Display( Dxyz ); ## <An external ring residing in the CAS Singular> ## gap> Exyz := ExteriorRing( Qxyz, "e,f,g" ); ## Q{e,f,g} ## gap> Display( Exyz ); ## <An external ring residing in the CAS Singular> ## gap> Dsxyz := RingOfDerivations( Qsxyz, "Dx,Dy,Dz" ); ## Q(s)[x,y,z]<Dx,Dy,Dz> ## gap> Display( Dsxyz ); ## <An external ring residing in the CAS Singular> ## gap> Esxyz := ExteriorRing( Qsxyz, "e,f,g" ); ## Q(s){e,f,g} ## gap> Display( Esxyz ); ## <An external ring residing in the CAS Singular> ## gap> Dixyz := RingOfDerivations( Qixyz, "Dx,Dy,Dz" ); ## (Q[i]/(i^2+1))[x,y,z]<Dx,Dy,Dz> ## gap> Display( Dixyz ); ## <An external ring residing in the CAS Singular> ## gap> Eixyz := ExteriorRing( Qixyz, "e,f,g" ); ## (Q[i]/(i^2+1)){e,f,g} ## gap> Display( Eixyz ); ## <An external ring residing in the CAS Singular> ## ]]></Example> ## </Subsection> ## <#/GAPDoc> LoadPackage( "RingsForHomalg" ); Print( "~~~~~~~~~~~\n\n" ); Print( "Singular\n\n" ); F2 := HomalgRingOfIntegersInSingular( 2 ); Display( F2 ); F2s := HomalgRingOfIntegersInSingular( 2, "s", F2 ); Display( F2s ); ZZ := HomalgRingOfIntegersInSingular( F2 ); Display( ZZ ); Q := HomalgFieldOfRationalsInSingular( F2 ); Display( Q ); Qs := HomalgFieldOfRationalsInSingular( "s", F2 ); Display( Qs ); Qi := HomalgFieldOfRationalsInSingular( "i", "i^2+1", Q ); Display( Qi ); F2xyz := F2 * "x,y,z"; Display( F2xyz ); F2sxyz := F2s * "x,y,z"; Display( F2sxyz ); F2xyzw := F2xyz * "w"; Display( F2xyzw ); F2sxyzw := F2sxyz * "w"; Display( F2sxyzw ); ZZxyz := ZZ * "x,y,z"; Display( ZZxyz ); ZZxyzw := ZZxyz * "w"; Display( ZZxyzw ); Qxyz := Q * "x,y,z"; Display( Qxyz ); Qsxyz := Qs * "x,y,z"; Display( Qsxyz ); Qixyz := Qi * "x,y,z"; Display( Qixyz ); Qxyzw := Qxyz * "w"; Display( Qxyzw ); Qsxyzw := Qsxyz * "w"; Display( Qsxyzw ); Dxyz := RingOfDerivations( Qxyz, "Dx,Dy,Dz" ); Display( Dxyz ); Exyz := ExteriorRing( Qxyz, "e,f,g" ); Display( Exyz ); Dsxyz := RingOfDerivations( Qsxyz, "Dx,Dy,Dz" ); Display( Dsxyz ); Esxyz := ExteriorRing( Qsxyz, "e,f,g" ); Display( Esxyz ); Dixyz := RingOfDerivations( Qixyz, "Dx,Dy,Dz" ); Display( Dixyz ); Eixyz := ExteriorRing( Qixyz, "e,f,g" ); Display( Eixyz );