Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
Project: cocalc-sagemath-dev-slelievre
Views: 4183461[1X3 [33X[0;0YExamples[133X[101X23[33X[0;0YAlthough there are some small examples embedded in chapter [14X4[114X, we will give4some complete examples in this chapter. Most of these could easily be called5with the example script mentioned in chapter [14X2[114X, but we will do them step by6step for best reproducability.[133X789[1X3.1 [33X[0;0YExample 1: Klein Bottle[133X[101X1011[33X[0;0YSuppose we want to calculate the cohomology of the Klein Bottle. First, we12need a triangulation. It could look like this:[133X1314[4X[32X[104X15[4X1--2--3--1[104X16[4X|\ |\ |\ |[104X17[4X| \| \| \|[104X18[4X4--5--6--4[104X19[4X|\ |\ |\ |[104X20[4X| \| \| \|[104X21[4X7--8--9--7[104X22[4X|\ |\ |\ |[104X23[4X| \| \| \|[104X24[4X1--3--2--1[104X25[4X[32X[104X2627[33X[0;0YThis results in the following list of maximum simplices:[133X2829[4X[32X Example [32X[104X30[4X[25Xgap>[125X [27XM := [ [1,2,4], [1,2,7], [1,3,6], [1,3,8], [1,4,6], [1,7,8],[127X[104X31[4X[25X>[125X [27X[2,3,5], [2,3,9], [2,4,5], [2,7,9], [3,5,6], [3,8,9],[127X[104X32[4X[25X>[125X [27X[4,5,7], [4,6,9], [4,7,9], [5,6,8], [5,7,8], [6,8,9] ];;[127X[104X33[4X[32X[104X3435[33X[0;0YAs there is no isotropy and therefore no [22Xμ[122X-map, we can continue with the36orbifold triangulation and simplicial set:[133X3738[4X[32X Example [32X[104X39[4X[25Xgap>[125X [27Xot := OrbifoldTriangulation( M, "Klein Bottle" );[127X[104X40[4X[28X<OrbifoldTriangulation "Klein Bottle" of dimension 2. 18 simplices on 9 vertic\[128X[104X41[4X[28Xes without Isotropy>[128X[104X42[4X[25Xgap>[125X [27Xss := SimplicialSet( ot );[127X[104X43[4X[28X<The simplicial set of the orbifold triangulation "Klein Bottle", computed up \[128X[104X44[4X[28Xto dimension 0 with Length vector [ 18 ]>[128X[104X45[4X[32X[104X4647[33X[0;0YNow we will need a [5Xhomalg[105X ring. As this is a small example we can compute48directly over ℤ, so we can use [5XGAP[105X. In case you have [5XRingsForHomalg[105X49installed you might want to try computing in another computer algebra system50with the command [10XHomalgRingOfIntegersInCAS()[110X, replacing "CAS" with the51corresponding system.[133X5253[4X[32X Example [32X[104X54[4X[25Xgap>[125X [27XR := HomalgRingOfIntegers();[127X[104X55[4X[28XZ[128X[104X56[4X[32X[104X5758[33X[0;0YWe are almost there. Let us create some coboundary matrices and compute59their cohomology:[133X6061[4X[32X Example [32X[104X62[4X[25Xgap>[125X [27Xc := CreateCoboundaryMatrices( ss, 4, R );;[127X[104X63[4X[25Xgap>[125X [27XC := Cohomology( c, R );[127X[104X64[4X[28X----------------------------------------------->>>> Z^(1 x 1)[128X[104X65[4X[28X----------------------------------------------->>>> Z^(1 x 1)[128X[104X66[4X[28X----------------------------------------------->>>> Z/< 2 >[128X[104X67[4X[28X----------------------------------------------->>>> 0[128X[104X68[4X[28X----------------------------------------------->>>> 0[128X[104X69[4X[28X<A graded cohomology object consisting of 5 left modules at degrees[128X[104X70[4X[28X[ 0 .. 4 ]>[128X[104X71[4X[32X[104X7273[33X[0;0YThis is the cohomology of the Klein Bottle.[133X747576[1X3.2 [33X[0;0YExample 2: [22XV_4[122X[101X[1X[133X[101X7778[33X[0;0Y[5XSCO[105X can also be used to compute group cohomology, as every group can be79represented as an orbifold with just a single point. For [22XV_4[122X, it would look80like this:[133X8182[4X[32X Example [32X[104X83[4X[25Xgap>[125X [27XM := [ [1] ];;[127X[104X84[4X[25Xgap>[125X [27XV4 := Group( (1,2), (3,4) );;[127X[104X85[4X[25Xgap>[125X [27Xiso := rec( 1 := V4 );;[127X[104X86[4X[25Xgap>[125X [27Xot := OrbifoldTriangulation( M, iso, "V4" );[127X[104X87[4X[28X<OrbifoldTriangulation "V4" of dimension 0. 1 simplex on 1 vertex with Isotrop\[128X[104X88[4X[28Xy on 1 vertex>[128X[104X89[4X[25Xgap>[125X [27Xss := SimplicialSet( ot );[127X[104X90[4X[28X<The simplicial set of the orbifold triangulation "V4", computed up to dimensi\[128X[104X91[4X[28Xon 0 with Length vector [ 1 ]>[128X[104X92[4X[25Xgap>[125X [27XR := HomalgRingOfIntegers();[127X[104X93[4X[28XZ[128X[104X94[4X[25Xgap>[125X [27Xc := CreateCoboundaryMatrices( ss, 4, R );;[127X[104X95[4X[25Xgap>[125X [27XC := Cohomology( c, R );[127X[104X96[4X[28X----------------------------------------------->>>> Z^(1 x 1)[128X[104X97[4X[28X----------------------------------------------->>>> 0[128X[104X98[4X[28X----------------------------------------------->>>> Z/< 2 > + Z/< 2 >[128X[104X99[4X[28X----------------------------------------------->>>> Z/< 2 >[128X[104X100[4X[28X----------------------------------------------->>>> Z/< 2 > + Z/< 2 > + Z/< 2\[128X[104X101[4X[28X >[128X[104X102[4X[28X<A graded cohomology object consisting of 5 left modules at degrees[128X[104X103[4X[28X[ 0 .. 4 ]>[128X[104X104[4X[32X[104X105106[33X[0;0YThis is the [22XV_4[122X group cohomology up to degree 4.[133X107108109[1X3.3 [33X[0;0YExample 3: The "Teardrop" orbifold[133X[101X110111[33X[0;0YYou have seen a manifold in example 1, and group cohomology in example 2.112Now we will meet our first proper orbifold, the Teardrop. This is the113example Moerdijk and Pronk used in their paper [MP99] on which my work is114based. It is an easy example, but includes both nontrivial isotropy and115[22Xμ[122X-maps. We take the isotropy at the top to be [22XC_2[122X. The triangulation looks116like this, with the gluing being at [1,3].[133X117118[4X[32X[104X119[4X 3=====1=====3[104X120[4X / \ / \ / \[104X121[4X / \ / \ / \[104X122[4X5-----2-----4-----5[104X123[4X \ /[104X124[4X \ /[104X125[4X 5[104X126[4X[32X[104X127128[33X[0;0YThe source code:[133X129130[4X[32X Example [32X[104X131[4X[25Xgap>[125X [27XM := [ [1,2,3], [1,2,4], [1,3,4], [2,3,5], [2,4,5], [3,4,5] ];;[127X[104X132[4X[25Xgap>[125X [27Xiso := rec( 1 := Group( (1,2) ) );;[127X[104X133[4X[25Xgap>[125X [27Xmu := [[127X[104X134[4X[25X>[125X [27X [ [3], [1,3], [1,2,3], [1,3,4], x -> (1,2) ],[127X[104X135[4X[25X>[125X [27X [ [3], [1,3], [1,3,4], [1,2,3], x -> (1,2) ][127X[104X136[4X[25X>[125X [27X ];;[127X[104X137[4X[25Xgap>[125X [27Xot := OrbifoldTriangulation( M, iso, mu, "Teardrop" );[127X[104X138[4X[28X<OrbifoldTriangulation "Teardrop" of dimension 2. 6 simplices on 5 vertices wi\[128X[104X139[4X[28Xth Isotropy on 1 vertex and nontrivial mu-maps>[128X[104X140[4X[25Xgap>[125X [27Xss := SimplicialSet( ot );[127X[104X141[4X[28X<The simplicial set of the orbifold triangulation "Teardrop", computed up to d\[128X[104X142[4X[28Ximension 0 with Length vector [ 6 ]>[128X[104X143[4X[25Xgap>[125X [27XR := HomalgRingOfIntegers();[127X[104X144[4X[28XZ[128X[104X145[4X[25Xgap>[125X [27Xc := CreateCoboundaryMatrices( ss, 6, R );;[127X[104X146[4X[25Xgap>[125X [27XC := Cohomology( c, R );[127X[104X147[4X[28X----------------------------------------------->>>> Z^(1 x 1)[128X[104X148[4X[28X----------------------------------------------->>>> 0[128X[104X149[4X[28X----------------------------------------------->>>> Z^(1 x 1)[128X[104X150[4X[28X----------------------------------------------->>>> 0[128X[104X151[4X[28X----------------------------------------------->>>> Z/< 2 >[128X[104X152[4X[28X----------------------------------------------->>>> 0[128X[104X153[4X[28X----------------------------------------------->>>> Z/< 2 >[128X[104X154[4X[28X<A graded cohomology object consisting of 7 left modules at degrees[128X[104X155[4X[28X[ 0 .. 6 ]>[128X[104X156[4X[32X[104X157158[33X[0;0YThis is the Teardrop cohomology.[133X159160161162